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RESUMO 

Para pilotos e engenheiros de corrida, a introdução de um novo circuito 

no calendário de corridas traz muitos desafios e expectativas. Configurar 

o veículo para novas condições e o processo de aprender o traçado do 

circuito são tópicos importantes a serem tratados. O foco deste trabalho 

reside na inclusão de um novo circuito no campeonato conhecido como 

Brasileiro de Marcas: um campeonato profissional de competição 

automobilística que utiliza veículos semelhantes a sedans originais de 

fábrica. O problema tratado está relacionado aos poucos dados 

disponíveis sobre o Circuito dos Cristais – MG, recentemente 

inaugurado no estado de Minas Gerais, e o curto tempo para preparar os 

pilotos durante o final de semana de corrida. Esse trabalho tem o 

objetivo de demonstrar como a análise de dados e simulações de tempo 

de volta podem ajudar uma equipe a melhorar o desempenho na 

competição. Para atingir o objetivo, técnicas de pilotagem e indicadores 

de performance de dois pilotos profissionais foram comparados e 

discutidos com base em dados coletados no circuito. Simulações de 

tempo de volta foram realizadas por meio de um modelo simples do 

veículo, porém com os parâmetros de entrada derivados de simulações 

estocásticas. Precisamente, o método Monte Carlo foi utilizado para 

estimar o coeficiente de arrasto, a eficiência do trem de força e o 

coeficiente de atrito pneu/solo com base em dados coletados do sistema 

de aquisição de dados de um Toyota Corolla 2016 de competição. Dois 

tipos de dados foram utilizados neste trabalho: dados de treinamento, 

coletados no Circuito Ayrton Senna – GO, utilizados para estimar os 

parâmetros, e dados de teste, provenientes do Circuito dos Cristais – 

MG, utilizados para validar as simulações. Ambos os circuitos foram 

parametrizados com ajuda de um software de desenho assistido por 

computador (CAD). 

 

Palavras-chave: Simulação de tempo de volta, método Monte Carlo, 

aquisição de dados, análise de dados, validação, parametrização, 

circuito.   



 

 

  



 

 

ABSTRACT 

For drivers and race engineers, a new circuit included to the racing 

calendar brings many challenges and expectations.  How to setup a 

racecar and the process of learning the racing line are important topics to 

be addressed. This work focuses on data analysis techniques and lap 

time simulations to deal with the introduction of a new circuit to the 

Brazilian touring car championship known as Brasileiro de Marcas: a 

professional racing category of silhouette racecars resembling compact 

sedans. The problem addressed relates to the scarce data available from 

the Cristais Circuit – MG, recently built at Minas Gerais state, and the 

short time to prepare drivers during the race event. This work aims to 

demonstrate how data analysis and lap time simulations can help an 

entry-level racing team to improve performance. To accomplish with the 

objective, driving techniques and key performance indicators of two 

professional drivers were compared and discussed supported by data 

acquired at the racetrack. Lap time simulations were also carried with 

the help of a simple vehicle model with input parameters derived from 

stochastic simulations. Precisely, Monte Carlo method was used to 

estimate drag coefficient, drivetrain efficiency and tire/road coefficient 

of friction support by data acquired from a 2016 Toyota Corolla. Two 

sets of data were acquired for this work: training data, from Ayrton 

Senna Circuit - GO, at Goiás state - used to estimate the parameters, and 

Cristais Circuit – MG, used to validate the vehicle model. The 

parameterization of the circuits was performed via a computer-aided 

design software. 

 

Keywords: Data acquisition, motorsport, Monte Carlo, validation, 

circuit parameterization. 
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1 INTRODUCTION 

 

Due to cost reduction over the last years, the use of data 

acquisition systems became a popular tool in many racing categories, 

including small racing classes. In fact, the problem has shifted from the 

cost of hardware to the cost of hiring personnel to make use of data 

(PARKER; HARGRAVE, 2016). This is strengthened by the increased 

amount of logged channels, and the short time available between test 

runs during the race weekend (VADURI; LAW, 2000). In order to 

quickly extracting meaningful information from data, a race engineer 

has to anticipate where and what to search for, which points out the 

importance of race team preparation before the race event. In this way, 

the question to solve is what should be learned beforehand a race event. 

Mitchell et al. (2000) extensively covered the process of learning 

a new circuit with the help of data acquisition, and from a driver 

technique viewpoint, Mitchell et al. (2004) presents a comprehensive 

review on driving books about racing lines. More specifically, Smith 

(1996) discusses about how the speed characteristic of a corner 

influences the line taken by the driver in order to improve performance. 

Shortly, he defines that slow corners will call for a late apex “slow in, 

fast out” approach, while fast corners will anticipate the apex. 

Before modern data acquisition systems, drivers and stopwatch 

were the main source of data for racing engineers (SMITH, 1996). Data 

gathering started in the late of 60’s with an analogue tachometer of the 

engine speed that could record the maximum engine speed. Because it 

indicated to the crew whether the driver had being damaging the engine 

by exceeding the revolution limit, this instrument was known as 

“telltale” tachometer (SMITH, 1996). 

Its most common configuration is composed by two needles. The 

main needle displays instantaneous engine speed and pushes the telltale 

needle that holds the maximum engine speed. Further developments 

created a functionality to help drivers to control gear-shifting points, in 

which the telltale needle resets itself after a few seconds. In this way, the 

driver did not have to keep his eyes at the tachometer at exact time of 

upshifting (FARRINGDON, 2017). 

In Brazil, one of the first modern data acquisition systems was 

used in the 1994 season of Formula Chevrolet with the drivers Ciro 

Alperti Jr. and Max Wilson. The system was a STACK® datalogger 

composed by 14 channels recording engine temperatures and pressures, 
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engine and wheel speed, throttle position, longitudinal and lateral 

accelerations. Although recorded channels were similar of those 

currently used in entry-level classes of motorsport, data analysis 

packages and computers were rudimentary, making data analysis much 

slower than it is nowadays (PERDOMO, 2017). 

From the race engineer standpoint, speed profile of a circuit is a 

valuable clue to setup a racecar. It reveals important aspects of a circuit 

such as the ratio between fast and slow corners, average and range of 

speed, which are meaningful to compromise the setup between 

mechanical and aerodynamic grip (SEGERS, 2014). In addition, vehicle 

gear ratio and driver gear-shifting strategy are important process to deal 

with, since often a given corner offers more than one option of gear to 

be engaged, and it is not always obviously realized which option 

improves lap time (SMITH, 1996; MAGGIO et al., 2003). So far, this 

introduction emphasizes the importance of data acquisition in motor 

racing. In this way, the question to solve is what should be learned 

beforehand a race event. 

In the past years, different vehicle dynamics models have been 

developed. In a broad range of goals and levels of detail, they vary from 

simple linear models to high degree of freedom non-linear multi-body 

systems (YANG et al., 2013). Regardless its complexity level, a 

simulation model is always going to be an approximation of the physical 

phenomena it is trying to represent (KUTLUAY; WINNER, 2014). 

Thus, how accurate a model represents a real system is a natural 

concern.  

Some papers approach validation by comparing simulation results 

of a proposed model with commercial packages (e.g. ADAMS/Car) such 

as in (SAGLAM; UNLOSOY, 2011; ZHANG et al., 2015; VADDI; 

KUMAR, 2015). In this validation approach, virtually any suitable 

vehicle with a determined set of known input parameters could be used 

to benchmark a proposed model. Although it has been reported as an 

effective validation approach, most of the real-life problems rely on the 

lack of data to populate a given vehicle model (CALLEA, 2004; 

TRAUB et al., 2016). 

On this topic, there is a tradeoff between model complexity and 

feasibility to acquire reliable input parameters for a model. This matter 

is especially important for small budget racing teams, because 

measuring vehicle parameters involves testing and tests cost money.  

Lap time simulation packages are generally proprietary or focus 

on high-level racing categories. However, there are commercial 

simulations packages using simple models that require basic input 
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parameters. OptimumG®, for example, provides the OptimumLap®, a 

free software for lap time simulation, which uses a simple point-mass 

vehicle model claiming errors within 10% compared with experimental 

data (OPTIMUMG, 2017b). The drawback of OptimumLap® is that it is 

not open source, which means the software code is proprietary and 

cannot be accessed neither edited.  

1.1 Problem statement 

The context of this research lies on the Brazilian touring car 

championship known as Brasileiro de Marcas: a professional racing 

category of specified production sedans with identical tires, chassis and 

engine build. This work focus on data analysis techniques and lap time 

simulations to deal with the introduction of a new circuit to the calendar. 

The problem addressed is related to the challenges derived from scarce 

data available to setup racecars, and the short time to prepare drivers 

during the race event.  

In professional racing categories, lap time difference between 

competitors is within tens of a second. Every improvement on the 

vehicle dynamics counts, which includes driver and team preparation. 

The challenge of racing a new circuit highlights the importance of 

quickly accessing precise information from vehicle data and feedback 

from drivers, since there is no reference from past events. Speed profile 

of a circuit plays a major role. Some corners have greater effects on lap 

time than others do, and the driving technique is strongly related to 

corner characteristics. 

Even though lap time simulation is a well-established engineering 

tool, it is rarely used by entry motorsport categories. Accurate vehicle 

models are complex, which involves many input parameters not easily 

measurable, and/or simulation packages are expensive. However, when 

it comes to speed profile for circuit recognition, overall vehicle 

dynamics instead of detailed vehicle behavior is an effective approach. 

It reduces the need of complexity of the vehicle model at cost of 

accuracy and lack of details to explore vehicle parameters.  

The simplest model available is a single-point of mass with a 

constant coefficient of friction between tire and road. Although it has 

been referred in the literature, the use of such simple models to generate 

speed profile of a circuit (Segers, 2014; Rouelle, 2014), results from 

simulations and how consistent these models are for various circuits 

were not discussed. Furthermore, the usefulness of such data for circuit 

recognition, and a method to populate such models with logged data 
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have not been addressed. In other words, could a small racing team 

benefit from such simulations? This is the main motivation for this work 

The Brazilian motorsport scenario currently has three main 

professional categories: Brasileiro de Marcas, Brasileiro de Turismo, 

and Stock Car. Hierarchically, the first is an entry-level professional 

category because Brasileiro de Turismo gives access to the major class 

Stock Car. Compared to Stock Car racing teams, Brasileiro de Marcas 

and Brasileiro de Turismo are considered small budget categories. 

1.2 Objectives 

This work aims to demonstrate how data acquisition and lap time 

simulation together can help a small budget racing team to improve its 

driver’s performance in a new and unknown circuit. To accomplish with 

the objective, the following key-points are addressed: 

 

 Collect data from race events; 

 Investigate key performance indicators of drivers from data; 

 Investigate driving techniques according to circuit 

characteristics and its effects on lap time; 

 Develop a vehicle model capable to simulate speed profile of 

a new circuit; 

 Develop a method to populate the vehicle model with 

estimated parameters from logged data;  

 Develop a model to parameterize a racing line in a new 

circuit; 

1.3 Research contributions 

Motorsport data is highly protected by racing teams. The main 

contribution of this dissertation is to incorporate to the literature a 

discussion on how a small budget racing team can use simulations and 

data analysis to improve its driver’s performance.  

This work provides a method to access overall vehicle parameters 

from data gathered at race events. Model parameters were estimated via 

a Monte Carlo optimization process using a cost function to evaluate 

simulation results with real data. The method was applied to a point-

mass vehicle model using AMESim® software in order to simulate the 

speed profile of a circuit. Results were discussed in terms of 
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repeatability of the simulation for different circuits and the usefulness of 

the data to tackle a new circuit. 

1.4 Thesis outline 

The present dissertation is divided into six chapters: Introduction, 

literature review, materials and methods, results, discussion of results 

and summary/conclusions. An overview of the thesis outline follows: 

Chapter 2 reviews the literature on driving techniques and racecar 

performance. First, front and rear-wheel-drive dynamics are discussed. 

After, the G-G diagram is presented followed by a discussion on 

cornering phases and racing lines. This chapter is enclosed with a brief 

presentation about data analysis in motorsports.  

Chapter 3 composes the second part of the literature review. It 

addresses the state of the art of vehicle parameter estimation and lap 

time simulations, which includes a discussion on validation procedures. 

Chapter 4 presents materials first. The racecar used for this work 

is introduced, as well as the data acquisition system and the circuits 

from which data were logged. After, methods are exposed in topics of 

vehicle model and assumptions, circuit and vehicle parameterization. 

Chapter 5 focuses on data analysis. How data acquired at the race 

event help drivers to improve performance is presented and discussed. 

Chapter 6 discusses simulation results in comparison to 

experimental data from the race event, focusing on the speed profile and 

gear shifting strategies of two Brazilian circuits. 

Chapter 7 closes this work. It summarizes and presents 

conclusions of previously topics. 
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2 MAN AND MACHINE: THE RACECAR 

When driving the limit, you are actually dealing with three 

different limits: the car, the track, and yourself (the driver). 

You must recognize and maximize each if you are to go faster 

(BENTLEY, 2011). 

2.1 Introduction 

Back into the fifties, driving techniques had already been 

discussed in the literature (MITCHELL; SCHROER; GRISEZ, 2004). 

Since then, aerodynamics, engine, tire and chassis technologies have 

progressed and many aspects have changed on how to drive a racecar. 

Out of the pits when a racecar is on track, vehicle dynamics is not only 

the vehicle itself; it is an interaction between racecar, circuit and driver 

(BENTLEY, 2011). In order to improve performance, a racing team 

needs to tackle them all. A fast car cannot make a slow driver go fast 

and the opposite applies.  

This chapter aims to discuss fundamental knowledge about motor 

racing. Firstly, the interaction between driver and racecar is discussed in 

the context of front and rear-wheel-drive configurations. Following, it 

presents the concept of performance envelope of a racecar, the so-called 

G-G diagram. Finally, racing lines and data analysis techniques are 

shown. 

2.2 Front and rear-wheel-drive dynamics 

A driver controls its racecar by throttle, braking, gear shifting and 

steering inputs. Improvements on lap time imply more time on throttle 

and less time on braking and coasting, which is the transition time 

between throttle and brake inputs. How the driver controls his racecar is 

known as driving technique. Besides, to drive a racecar at its limit 

implies different techniques according to the racecar particularities. This 

section discusses main characteristics of front and rear-wheel-drive 

because the object of this study is a front-wheel-drive (FWD) racecar, 

opposed to the popular rear-wheel-drive (RWD) racecar. 

Engine torque and power accelerates a vehicle in function of 

driveline ratio and traction available at the tires. This longitudinal 

acceleration transfers loads from the car front end to its rear end, which 



8 

 

directs influences the tire traction capability (MILLIKEN; MILLIKEN, 

1995).  

Figure 2.1 illustrates this phenomenon. Whenever there is a 

forward acceleration (𝑎𝑥), an inertial force (F) is developed. The 

moment about the C.G height (h) transfer load from the front tire to the 

rear tires (𝛥𝑤𝑥) in function of (a) and (b), which are the distance of the 

C.G to the front and rear axle respectively. 

 
Figure 2.1: Longitudinal load transfer. Adapted from Milliken & Milliken 

(1995). 

A rear-wheel-drive vehicle will benefit from this longitudinal 

load transfer due to an increased load on rear axle, which translates into 

more traction capability. The opposite is true for a front-wheel-drive 

vehicle, because forward acceleration subtracts vertical load from the 

driven wheels. 

Indeed, in motorsport history FWD racecars have not been much 

popular. Most successful FWD racecars have competed in low power-

to-weight ratio categories and in cases where directional stability was 

important, such as in slippery surfaces (MILLIKEN; MILLIKEN, 

1995).  

A recent attempt to compete in high level was the Nissan’s 2015 

GT-R LM NISMO, conceived to compete at the highest Le Mans racing 

class: the Le Mans Prototype 1 (LMP1), which has been essentially 

dominated by rear-wheel-drive solutions with temporary hybrid electric 

all-wheel-drive (AWD) configuration (COTTON, 2016). The project 

was considered disruptive because of the known dynamics limitations of 

a FWD configuration. In fact, the aim was to take aerodynamics 

advantages from LMP1 regulations, which were more compliant with 

front diffuser design (ORTIZ, 2015).  
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Aiming to increase traction at the driven wheels, FWD cars are 

commonly front weight biased, which means longitudinal position of the 

center of gravity (C.G.) is closer to front axle than rear axle of the 

vehicle. The tradeoff is a vehicle naturally understeer negotiating a 

corner at the limit of adhesion (MILLIKEN; MILLIKEN, 1995; ORTIZ, 

2015). In addition, front weight bias negatively affects braking 

capability due to the overload of front brake discs, pads and due to the 

tire load sensitivity (ORTIZ, 2015). An increase in tire vertical load 

increases the tire adhesion on track surface, but not in a linear manner. 

In other words, an even load distribution on the tires produces more 

lateral and longitudinal forces than if it is unevenly distributed.  

From a driver´s point of view, this natural tendency of a FWD to 

understeer is comfortable because easing off the throttle may bring the 

car back to control. However, an understeering car results in slow lap 

times because it is a stable condition. On this theme, Nowlan (2015) 

presents lap time simulations of two configurations of a LMP1 

prototype: a FWD and RWD. The simulations confirms the FWD would 

have mid-corner understeer behavior resulting in slower lap times due to 

lower mid-corner and corner exit speeds.  

One could conclude the overall concept of a FWD racecar is 

generally slower than a RWD. Milliken & Milliken (1995) 

complements: “Rear-wheel-drive is by far the most successful in racing. 

The combination of front-wheel steering and rear-wheel-drive gives the 

driver control over both end of the vehicle by steering by throttle.” 

In FWD categories, vehicle setup needs to compensate the 

understeering tendency in order to have a competitive racecar. 

According to Milliken & Milliken (1995), it can be achieved by 

increasing the front axle adhesion, e.g. with bigger tires at the front axle, 

or reducing the rear axle adhesion by increasing lateral load transfer on 

the rear axle.  

Another way of balancing an understeering vehicle is to increase 

rear brake bias to change the vehicle attitude and help the turn in phase 

of cornering. To exemplify, the key concept of the popular “hand-brake 

turn” rally maneuver is based on detraction of rear tires adhesion 

(MILLIKEN; MILLIKEN, 1995). Driving a FWD at the limits is no 

easy task. Bentley (2011) emphasizes the compromises to achieve 

balance of handling and performance, a fast car is only fast if it could be 

driven with confidence.  
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2.3 G-G diagram 

G-G diagram is a plot of longitudinal acceleration (X-axis) 

against lateral acceleration (Y-axis) of a racecar, expressed in units of 

gravitational acceleration [G]. In motor racing, it is as a measure of the 

overall vehicle performance, a combination of driver, vehicle and road 

performances. 

To understand the fundaments of the G-G diagram, the concepts 

of tire friction circle and vehicle friction circle need to be revisited. 

According Milliken & Milliken (1995), no matter how much slip angle 

and slip ratio a tire is subjected on, the maximum force it produces is 

limited by the vertical load times the tire/road coefficient of friction. 

Thus, the capacity of a tire to generate longitudinal, lateral or combined 

forces can be represented as a circle with constant radius for a given 

vertical load, camber angle, tread temperature and tire pressure. In fact, 

tire behavior is even more complex. Due to tire characteristics, the 

friction circle is often an ellipse but the main concept remains true. 

In the tire friction circle illustrated by Figure 2.2, the limit of 

adhesion is represented by the radius (R) of the circle.  

 
Figure 2.2: Tire friction circle concept. Adapted from Milliken & Milliken 

(1995). 

The figure shows a resultant vector from two components, pure 

lateral and pure longitudinal forces. If the maximum tire capacity is used 

for pure longitudinal force, for example, there is no room to develop 
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lateral force. This phenomenon is defined by the equation below, in 

which the resultant total force (𝐹𝑟) is the sum vector of lateral (𝐹𝑦) and 

longitudinal (𝐹𝑥) forces. 

 𝐹𝑟 = √𝐹𝑥
2 + 𝐹𝑦

2 (2.1) 

Tire capability to generate forces is independent of direction; it is 

a sum vector of both lateral and longitudinal forces limited by the 

maximum tire/road adhesion. Therefore, if tire load sensitivity is 

neglected, the tires could be lumped into only one vehicle friction circle, 

provided the vertical load is the total vehicle weight. Thus, the radius of 

a vehicle friction circle would be expressed as tire/road coefficient of 

friction times the vehicle weight (MILLIKEN; MILLIKEN, 1995).  

In other words, vehicle friction circle is the ideal limit of 

adhesion of a racecar. It is considered ideal, impossible to reach, due to 

power limitations, load transfer and suspension effects, stability and 

brake balance. All these factors inhibit a vehicle to make use of 

maximum force available at the tires at the same time (MILLIKEN; 

MILLIKEN, 1995).  

The vehicle friction circle is presented in Figure 2.3 (dashed line) 

in comparison to the G-G diagram, which is, in turn, measurable (black 

circles). LH and RH stands for left and right-hand respectively. 

 
Figure 2.3: G-G diagram of a racecar. Adapted from Milliken & Milliken 

(1995). 
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Also presented in this diagram, the ideal G-G diagram (black 

line) represents the performance limit of the vehicle driven by an ideal 

driver. In other words, an ideal driver is capable to drive the vehicle 

hundred percent of the time at the limit. Although unachievable, the 

ideal G-G diagram provides a benchmark to the measured points. In this 

diagram, points A, B and C and the arrows indicate how acceleration is 

developed during a cornering maneuver. 

The G-G diagram is the interaction of driver, racecar and track 

surface for a given maneuver. As an example, consider a vehicle 

accelerating in straight line, such as in drag racing. The peak of forward 

longitudinal acceleration depends on many factors such as driver throttle 

control, engine power, aerodynamic resistance, tire/road grip and so on. 

In this example, only the upper boundary of the G-G diagram is of 

interest, which in most cases is trimmed by the available engine power. 

In Figure 2.3, this power limit is seen in the flat plateau of the G-G 

diagram. 

The other parts of the G-G diagram are explored in cornering 

maneuvers. Expanding the above example, consider a vehicle 

negotiating a left hand corner (Figure 2.3, points A, B, C). From wide 

open throttle (A), the driver brakes in a straight line exploring the lower 

part of the diagram (B); turn into the corner while brake pressure is 

reduced (transition B to C) until it reaches the corner apex (C), where 

the vehicle is momentarily in steady-state; then starts to accelerate the 

vehicle exiting the corner (transition C to A). 

High downforce vehicles such as formula cars have the 

boundaries of the G-G diagram greatly affected by the speed 

(BRAYSHAW, 2004). Figure 2.4 presents a qualitative example of this 

phenomenon.  
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Figure 2.4: Speed effects on G-G diagram of a high downforce vehicle.  

Adapted from Milliken & Milliken (1995) and Brayshaw (2004). 

As speed increases, cornering and braking ability are positively 

affected by aerodynamic forces, while forward acceleration is negatively 

affected by higher drag force. Because aerodynamic forces are changing 

with the square of velocity, higher speeds increase tire load and, in 

consequence, more tire forces are generated. This effect improves the 

cornering ability of a racecar, seen in the G-G diagram as a larger 

sideway envelope. 

Downforce and drag forces also improve traction and braking 

ability; however, there is a conflicting effect on the G-G diagram. On 

the one hand, it improves braking because drag forces are contrary to 

forward movement, and downforce are generating more tire load. On the 

other hand, it reduces forward acceleration capability because increased 

drag is more significant than the improved traction for a power limited 

vehicle. 

2.4 The phases of a corner 

There are slightly different approaches to split a corner into 

phases. The approach considered in this work is presented in Figure 2.5.  
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Figure 2.5: Corner phases and its corresponding G-G diagram areas. Adapted 

from Bentley (2011). 

A macro view considers four phases: corner approach, corner 

entry, mid-corner and corner exit (SMITH, 1996; BENTLEY, 2011). It 

can be further detailed at the level of driver controls (BENTLEY, 2011), 

which is suitable to explore the G-G diagram (Figure 2.5) and considers 

five phases: 1. pure braking; 2. combined braking and cornering (trail 

braking); 3. pure cornering; 4. combined cornering and acceleration; and 

5. pure acceleration. 

2.4.1 Phase 1: Pure braking 

According to Smith (1996), Sir Jackie Stewart (three-time 

Formula 1 world champion) once said the last thing a racing driver 

learns how to do really well is to use the brakes. The issues are related to 

how quick the driver hit the brakes, how much brake pressure is 

developed, and braking reference points. The following paragraphs 

address each one of them. 

The less time a racecar spends braking, more time it spends on 

throttle, resulting in faster lap times (BENTLEY, 2011; SEGERS, 

2014). Braking quickness and effort (rising and magnitude of brake 

pressure) are interrelated. To minimize the time wasted from wide open 

throttle (WOT) to braking phase, brake pressure must be built up as 
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quickly as possible as long as the wheels are prevented to lock 

(SEGERS, 2014).  

In fact, it is a question of balance. As the driver brakes, load is 

transferred from the rear axle to the front axle, increasing tire adhesion. 

On the other hand, aerodynamic loads are being reduced with the square 

of velocity, decreasing tire adhesion. From a data analysis point of view, 

Segers (2014) suggests the differentiation of the longitudinal 

acceleration data channel as a measure of the braking quickness. As a 

rule of thumb, Segers considers fast braking as anything under 0.5 

seconds to achieve the peak of negative longitudinal acceleration  

Another side of braking has to do with choosing an appropriate 

reference braking point, to be the end of maximum braking instead of 

the common used start of braking point (BENTLEY, 2011). The basis of 

this affirmation lies on the effect of speed on the braking distance. The 

faster is the corner approach, sooner the driver should anticipate the start 

braking point to compensate the longer braking distance.  

2.4.2 Phase 2: Trail braking 

The overlap of braking and steering, the trail braking technique, 

started to be discussed in press only in the seventies (MITCHELL, 

2004). At that time, the technique was controversial, since driving 

schools had been teaching braking and cornering as two separate phases. 

All the braking being done in a straight line to only then turn into the 

corner (BENTLEY, 2011). According to Mitchell (2004), only from the 

year 2000 trail braking was considered a standard technique.  

From the driver´s point of view, trail braking is a tradeoff 

between braking and steering as the vehicle negotiates a corner 

(BENTLEY, 2011). The engineering side of trail braking has its base on 

the G-G diagram.  

Figure 2.6 illustrates two G-G diagrams for the same cornering 

maneuver, the left diagram (a) illustrates braking and cornering in 

distinct phases, leaving unused tire potential indicated by the shadowed 

area. On the other way, the right diagram (b) shows braking and 

cornering overlapped, using full potential of the tires. This is the so-

called trail braking technique. 
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Figure 2.6: G-G diagram for two different cornering maneuvers. Adapted from 

Milliken & Milliken (1995) and Segers (2014). 

From Figure 2.6-a, for a short period, the transition from braking 

to cornering is performed below the vehicle limit of adhesion. This 

waste of tire potential is directed translated into to waste of lap time. It 

happens because the vehicle cannot instantly change its trajectory from a 

straight line to a curved path (BENTLEY, 2011). Figure 2.6-b shows a 

smooth transition between braking and cornering at the vehicle limit of 

adhesion. As lateral acceleration increase, longitudinal acceleration 

decrease.    

2.4.3 Phase 3: Pure cornering 

The pure cornering phase is a very short period where the car is 

closer to its steady state. From the initial cornering maneuver, braking 

pressure is reduced to zero at some point before the corner apex. At this 

point, throttle is applied only to keep the vehicle at constant velocity 

(SMITH, 1996). It prevents external resistances such as aerodynamic 

drag, tire rolling resistance and driveline resistance to create a parasite 

longitudinal acceleration, reducing cornering capability from the G-G 

diagram. 

2.4.4 Phase 4: Combined cornering and throttle 

The success of the corner exit phase, including combined 

cornering and acceleration, is a consequence of the previously phases. 
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Its goal is to get on throttle as soon as possible without affecting car 

balance. The transition from pure cornering to WOT acceleration should 

be as smooth as possible (SMITH, 1996; BENTLEY, 2011). Too much 

steering input suddenly unloads the inner tires; too much steering angle 

slows the car down by scrubbing the tires; too much throttle input can 

cause wheel spin or detracts cornering capacity.  

2.4.5 Phase 5: Full throttle 

In the last cornering maneuver phase, the vehicle is at WOT 

without steering.  

2.5 Racing lines 

Early driving books considered a unique racing line for all 

drivers, while more recently books treat different racing lines for 

different drivers (MITCHELL, 2004). According to Smith (1996), there 

is, however, an optimum line through a corner, but it is a matter of 

circumstance, corner configuration, alongside the conditions of the 

circuit, vehicle and tires. For this reason, driving at the limit is 

frequently referred to as driving the “traction circle”. (SMITH, 1996; 

MITCHELL, 2004; BENTLEY, 2011), another name for the ideal G-G 

diagram, which is the ultimate vehicle limit for a given operation 

condition (MILLIKEN; MILLIKEN, 1995).  

Similar to other sports, motorsport is not an exact science. There 

is the human part of the equation. However, as shown there are many 

factors influencing the fastest line for a given corner, some fundamental 

concepts on professional driving techniques. The following sections 

discuss the basic concepts of racing lines.  

2.5.1 Corner leading to a long straight – the late apex line 

Late apex or the “slow in, fast out approach” sacrifices corner 

entry speed to favor corner exit speed by increasing the corner exit 

radius (SMITH, 1996). Because a racecar often spends most of its time 

on the straights at maximum acceleration (SEGERS, 2014), this racing 

line is used when there is a long straightaway following a corner.   

The idea is to anticipate both braking and acceleration phases to 

carry on the exit speed advantage all the way down the straight. Since 

the distance travelled is function of speed, this advantage direct reflects 

in faster lap times. Bentley (2011) complements: “races are won on the 

straightaways, not in the corners”. 
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The longer the straight, more substantial is the time advantage in 

comparison to the traditional geometric line (Figure 2.7). The limit of 

time gain is imposed by the vehicle acceleration rate, trimmed by engine 

power considering internal and external resistances, and/or gear ratio at 

highest gears.  

 
Figure 2.7: The late apex approach. Adapted from Bentley (2011) and Segers 

(2014). 

Figure 2.7 illustrates the late apex approach in comparison with a 

tradition geometric line. The late apex racing line anticipates the braking 

zone; sharpens the turn in and takes a larger exit radius racing line. The 

travelled distance is also longer. Corners leading to long straightaways 

are the most important ones. For this reason, corner entry speed is 

sacrificed to gain corner exit speed. 

According to Smith (1996), late apex is recommended for low 

and medium-speed corners. The concept of low, medium and high-speed 

is closely related to the racecar characteristics. A low-speed corner for a 

saloon racecar could be a medium-speed corner for a formula racecar, 

for example. This concept is based on a heuristic knowledge of the 

engineers and, to the knowledge of the author; there is no strict 

definition reported in the literature. However, according to Perdomo 

(2017, personal communication¹), it is function of corner entry speed, 

corner radius and banking angle, which is the lateral inclination of the 

racetrack. 
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As a reference to the reader in this work, in which a low powered 

FWD racecar is the object of study, low-speed corners are considered 

those negotiated on first and second gears (lower than 110km/h). 

Medium-speed corners on third and fourth gears (110km/h – 160km/h); 

and high-speed corners are those negotiated on fifth to sixth gears 

(160km/h or higher).  

For high-speed corners, higher exit speed provided by the late 

apex does not pays off the lower apex speed and the longer distance 

travelled. This happens due to the limited acceleration capacity at higher 

speeds, reduced by longer gear ratios and higher internal resistances 

(drive and powertrain efficiencies) and external resistances (tire rolling 

resistance and aerodynamic drag forces).  

2.5.2 Fast corner or leading to a short straight - The early apex line 

The early apex line is used in high-speed corners and in corners 

leading to a short straight (Figure 2.8).  

 
Figure 2.8: The early apex approach. Adapted from Bentley (2011) and Segers 

(2014). 

 

 

 

 

 
¹ Personal communication with Rodolfo Perdomo, Eng. at Interlagos Circuit, 2017. 
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The faster the corner, the earlier is the apex (SMITH, 1996). For a 

corner leading to a short straight or to another corner, there is no 

advantage in preparing the corner exiting. 

Back to the previous discussion, as the speed increases, the 

acceleration capability is reduced because it is no more limited by 

traction, but by power. Thus, taking a larger exit radius with a late apex 

approach does not help acceleration, because the limit factor is engine 

power, not tire adhesion. Therefore, all the speed carried through the 

corner and the shorter distance travelled compared with the late apex 

line is advantageous if the corner does not lead to a long straight. 

2.5.3 Cornering sequences “S bends”  

The racing line for corners in sequence should aim the exit speed 

by using the late apex approach, especially if it leads to a relative long 

straight (BENTLEY, 2011). In other words, the racing line should be 

considered as function of the last corner, preparing the exit phase.   

Figure 2.9 shows a typical “S bend”, where the corner entry is 

taken by an early apex while the link curve is a preparation for opening 

the exit radius in the last corner.  

 
 

Figure 2.9: Cornering sequence. Adapted from Bentley (2011) and Segers 

(2014). 

A racing line for an “S bend” cornering sequence should be 

planned to prepare the exit phase of the last corner. Early apex on the 

first corner; late apex on the last one. 
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2.6 Data analysis in motorsports 

Data acquisition in a racecar has three main applications: analysis 

of vital signals, driver activities and chassis parameters (SEGERS, 

2014):  

Vital signals deals with racecar reliability; logged channels 

measure mainly temperatures, pressures and voltages, i.e. water radiator 

inlet/outlet temperatures; engine oil temperature and pressure; battery 

voltage and sensor readings. Vital signs analysis is performed in time 

domain because the engine could be running even if the vehicle is not 

moving.  

Driver´s activities focus on driver controls. Measurements of 

steering angle, engaged gear, throttle position and brake pressure are 

considered basic logged channels. Instead of time domain, this analysis 

is performed in distance domain so events of different laps can be 

compared at the same circuit location.  

Chassis parameters deal with vehicle performance. 

Accelerometer data, GPS data, tire pressure and temperature, ride 

height, suspension loads, displacements and velocities. Nowadays, 

virtually any parameter could be measured.  

Sensor readings are recorded by a datalogger unit at various 

sampling rates according to the application. Suspension displacement 

measurements are logged at higher sampling rate than engine 

temperature, for example. Otherwise, details happening in a very short 

time interval, such as racetrack irregularities, are missed. 

There are several companies providing complete solutions for 

data logging, including sensors, wiring harnesses, dataloggers and 

software packages specialized in motorsports data analysis. Most 

commercial data analysis packages provide several ways to display data. 

Most common ones are plots of data channel in time and distance 

domains; histograms; scatter XY plots and vehicle position at the circuit 

in map format. These packages allow to setup different screens for 

different analysis purposes.  

As an example, Figure 2.10 demonstrates a customized page in 

MoTeC i2® software, used to analyze vehicle vital signals. The main 

window is a collection of temperatures and pressures plots in the time 

domain; the right side shows a scatter plot of the fuel pressure as 

function of lateral acceleration, and right below there is a track map with 

the vehicle position. The bottom part of the window displays a 

collection of alarm gauges, triggered at user-defined thresholds.  
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Figure 2.10: Vital signals analysis page in MoTeC i2® analysis software. 

Besides, it is often possible to include videos overlays. Figure 

2.11 presents an onboard video overlay performed in AiM Race Studio 

Analysis® software. On the left, longitudinal acceleration and vehicle 

speed are plotted in the distance domain; on the right, the onboard video 

is synchronized with logged data. As data cursor moves on the left, 

onboard video moves back and forward accordingly. 

 
 

Figure 2.11: Onboard camera overlay in AiM Race Studio Analysis® software. 
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Segers (2014) emphasizes the great amount of sensors available. 

Therefore, engineers should always plan what they want to measure. 

Segers further states: “data analysis often provides as much questions as 

it provides answers”. Indeed, since 2000, when data acquisition systems 

became popular in NASCAR (National Association of Stock Car Auto 

Racing), the amount of collected data at race events and practice 

sessions was already greater than personnel resources to use it 

(VADURI; LAW, 2000).  

2.6.1 Vehicle performance 

 There are various techniques to access vehicle performance and 

balance characteristics from data acquisition systems (VADURI; LAW, 

2000; SEGERS, 2014; PARKER; HARGRAVE, 2016). The backside of 

data is that proper analysis is time consuming. As a result, according to 

Vaduri & Law (2000), many racing teams change springs, dampers, 

anti-roll bars, etc. purely on the driver´s feedback, without using data 

acquired from earlier runs. This is common practice, especially in small 

budget teams with limited personnel.  

In cases feedback is provided by professional racing drivers, car 

balance seems to be more accurate. The problem lies when it comes to 

vehicle setup changes, for which the driver´s feedback solely could not 

be accurate enough to access small changes. This problem was even 

reported in more controlled environments, such as in passenger cars 

subjective evaluation of handling and steering feel, where disagreement 

between experts test drivers were reported (GÓMEZ et al., 2015).     

This scenario suggests the need of methods to quickly access 

vehicle performance at the racetrack. As an example, Vaduri & Law 

(2000) developed algorithms utilizing fuzzy logic with the aim to 

identify the vehicle balance. Their algorithm is capable to pin out 

understeer and oversteer events in actual data.   

In recent years, aiming to cut costs in racing categories, more 

time is invested in vehicle simulations and driver simulators instead of 

actual track testing. Besides, time reduction at racetrack was not reacted 

by commercial analysis packages (e.g. in form of novel analysis 

solutions to reduce time spent by data engineers) (PARKER; 

HARGRAVE, 2016), which still motivates the development of 

alternatives data analysis packages and methods.  

In respect to commercial data analysis packages, Segers (2014) 

proposes analysis techniques with the use of math channels to quickly 

access key performance indicators (KPI’s). He suggests the use of 
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metrics, where each metric is a single value per lap of a given statistical 

parameter. Metrics can be extracted from the entire distance or time over 

a complete lap or from specific locations at the circuit, such as a given 

corner or straight (SEGERS, 2014).  Common metrics are average 

throttle position, average speed, percentage of the lap spent on brakes, 

etc.  

The main advantage of metric use is the capacity to summarize 

large amounts of data in run charts plots (SEGERS, 2014). These plots 

display each metric as function of lap number and give a general 

overview of vehicle performance, where trends and improvements along 

runs can be more easily identified.  

2.6.1.1 Grip factors 

Based on the G-G diagram concept, Segers (2014) presents a 

technique to estimate grip levels of a racecar from accelerometer data, 

the so-called grip factors (𝐺𝐹). Lateral and longitudinal accelerations 

are used to create math channels of overall grip level, braking grip, 

acceleration grip, cornering grip and aerodynamic grip. Each math 

channel uses either combined acceleration or lateral and longitudinal 

accelerations depending on operation conditions. These math channels 

only store data within a predefined boundary, a technique known as 

signal gating (SEGERS, 2014). The following paragraphs describe the 

details of each grip factor.  

Overall grip factor (𝐺𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙), defined by Equation 2.2, is the 

combined acceleration constrained by acceleration thresholds. 

Constraints are set to exclude data where the vehicle is power limited. 

As a result, data from straight-line acceleration are not included in the 

grip factor because the vehicle is power limited and instead of grip 

limited. 

 𝐺𝐹𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑎𝑟 𝑓𝑜𝑟 𝑎𝑟 > 1𝐺 (2.2) 

Combined acceleration, defined by Equation 2.3, is the resultant 

acceleration component (𝑎𝑟) from longitudinal and lateral accelerations.  

 𝑎𝑟 = √𝑎𝑥
2 + 𝑎𝑦

2 (2.3) 

Braking grip factor (𝐺𝐹𝑏𝑟𝑎𝑘𝑖𝑛𝑔) is defined by Equation 2.4.  

Negative longitudinal acceleration signal gating is triggered for values 

below 1G to capture braking phase. 
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  𝐺𝐹𝑏𝑟𝑎𝑘𝑖𝑛𝑔 = 𝑎𝑥 𝑓𝑜𝑟 𝑎𝑥 < 1𝐺  (2.4) 

Acceleration grip factor, Equation 2.5, aims to record data only 

for acceleration phase. For this reason, constraints are set to trigger 

positive longitudinal acceleration and lateral acceleration within 0.5G. 

Both criteria must be met at the same time. 

 𝐺𝐹𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑎𝑥 𝑓𝑜𝑟 𝑎𝑥 > 0 𝑎𝑛𝑑 |𝑎𝑦| <  0.5𝐺 (2.5) 

Cornering grip factor, Equation 2.6, aims to collect data from 

cornering maneuvers. To do so, signal gating is triggered for lateral 

acceleration above 0.5G. 

 𝐺𝐹𝑐𝑜𝑟𝑛𝑒𝑟𝑖𝑛𝑔 = 𝑎𝑦 𝑓𝑜𝑟 |𝑎𝑦| >  0.5𝐺 (2.6) 

Aerodynamic grip factor is defined in a similar manner, except 

that thresholds are set to include speed dependency of aerodynamic 

forces on cornering maneuvers: 

 𝐺𝐹𝑎𝑒𝑟𝑜 = 𝑎𝑦 𝑓𝑜𝑟 𝑎𝑦 > 1𝐺 𝑎𝑛𝑑 𝑣𝑥 >  120 𝑘𝑚/ℎ (2.7) 

where 𝑣𝑥 is the vehicle speed. 

 

The signal gating thresholds presented in this section are 

recommendations for a typical GT racecar; however, Segers (2014) 

emphasizes the importance of adjust this values according to the vehicle 

characteristics. 

From the grip factor dataset, various metrics could be extracted, 

i.e. cumulative sum of the signals, maximum and average values. Segers 

(2014) recommends averaged values because the cumulative sum of 

signals in function of track distance is highly dependent on the distance 

signal accuracy, which is also affected by the racing line taken at a given 

lap. Besides, maximum values represent only a small percentage of the 

dataset and are prone to be affected by signal noise. 

2.6.2 Driver´s performance  

Nowadays, data gathering for driver´s training is spread from top 

to bottom level of motorsports. Even track-day drivers and karting 

championship have data analysis in their schedule (COSWORTH, 
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2016). The problem lies, again, in the time available to extract 

information. 

Almost two decades ago, Mitchel (2000) had reported driving 

schools that were not often using data acquisition for training driving 

students due to limited time available during classes. According to him, 

the coach´s feedback may suffice to improve performance of a novice 

driver. However, as students get closer to instructor’s performance, 

small improvements become less obvious and data logging becomes a 

crucial part of training.  

In actual racing environment, data gathering is a basic requisite 

for performance improvements. It points out things the driver has not 

noticed and confirms others the driver has already figured out 

(BENTLEY, 2011).  

Most of driver´s activities analysis is performed by comparing a 

given lap with a faster reference lap. Data overlay is a basic function of 

any quality data analysis package (SEGERS, 2014), and provides a 

direct measure of braking points, cornering speed, gear shifting, etc.  

 Although data overlay from laps of the same driver is 

meaningful, having a reference lap from another driver is desirable. 

Laps from the same driver are essential for driving consistency 

improvements along the runs, while comparing to another driver´s lap 

reveals different driving approaches. 

To optimize the time spent in data analysis, Mitchell (2000) 

suggests the use of lap statistics to access overall performance before 

more in depth analysis. These lap statistics are sector times, average 

throttle position, average steering angle, average braking and minimum 

speed. In Mitchell (2000), lap statistics is presented in a tabulated form 

as an aid to training test drivers. According to concept Segers (2014), 

lap statistics is metrics and could be presented in run charts for a more 

visual presentation of data.  

Important to highlight, although a racing driver should know how 

to properly interpret driver´s activity data (BENTLEY, 2011, SEGERS, 

2014); a racing driver is not a data engineer. Thus, data amount 

presented to drivers should not be overwhelming. Small steps of 

improvements at time must be planned after each practice outing. 

Besides, more visual presentation of data such as track maps colored 

with throttle application sometimes gives more insights to the driver 

than data squiggly lines. 

Driver’s self-confidence should be also taken into account. 

Possible improvements on driving techniques should be tackled in 

conjunction with the driver understanding of data. In other words, a data 
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engineer must provide directions for the driver himself/herself see on 

data where he/she could improve and highlight progress along the race 

event. To knowledge of the author, currently there is no scientific 

methodology reported in literature for training racing drivers with data 

acquisition, even though various analysis techniques have been reported. 

In the following chapter, an overview on lap time simulation is 

given. Methods for simulation such as Monte Carlo and Design of 

Experiments are presented with the aim to provide a background for the 

methodology proposed late on this work. 
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3 MODELING AND SIMULATION METHODS 

Racecar simulation is a powerful tool, but it must always be 

cross-referenced by actual experience, hand calculations, 

and ultimately the stopwatch. (NOWLAN, 2016). 

3.1 Introduction 

This chapter provides a background on modeling and simulation 

methods. First, Monte Carlo method is addressed focusing on the 

underlying reasoning and techniques for stochastic simulations. 

Secondly, general concepts of modeling are presented. Third section 

gives an overview of modeling strategies for lap time simulations based 

on the literature. After, a discussion on verification and validation of 

simulations is given. The enclosing section addresses accuracy metrics 

and accuracy criteria for simulations. 

3.2 Monte Carlo method  

Monte Carlo is a stochastic method that uses sampling random 

numbers to investigate a problem (SOLONEN, 2006). For Raychaudhuri 

(2008), “this method of simulation is very closely related to random 

experiments, experiments for which the specific result is not known in 

advance”.  

Monte Carlo simulations are applied to many areas of study, from 

natural and social sciences to engineering fields (RAYCHAUDHURI, 

2008). Not surprisingly, there is no single Monte Carlo type of 

simulation (HARRISON, 2010). However, they do follow a pattern: 

systems are modeled as statistical distributions, often probability density 

functions (PDF’s), from which input parameters are randomly sampled. 

Each set of the sampled parameters generates a set of output parameters 

used to solve numerical problems or to compute statistics of interest. 

(RAYCHAUDHURI, 2008; HARRISON, 2010). 

Raychaudhuri (2008) presents a comparison between 

deterministic and stochastic models. Deterministic models evaluate 

mathematical expressions based on a set of input parameters (Figure 

3.1).  

 
Figure 3.1: Mathematical models (RAYCHAUDHURI, 2008). 
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In cases where input data of deterministic models are composed 

of unique set of input parameters, influence of external factors are not 

being considered. Raychaudhuri (2008) highlights that “realistic models 

are subject to risk from the systematic variation of input parameters”. 

For this reason, many researches includes a baseline, a best and worst-

case scenarios to accomplish with external variations of input 

parameters. This method is often referred to as case-based modeling 

(Figure 3.2). 

 
Figure 3.2: Case-based modeling. Adapted from Raychaudhuri (2008). 

Raychaudhuri (2008) underlines that case-based modeling can 

have shortcomings. The identification of best/worst case scenarios might 

be difficult to perform and they may happen at different time for 

different parameters.  This implies the need of more cases to include the 

combination of scenarios, which brings another disadvantage related to 

the management of various versions of input datasets. Monte Carlo 

method emerges as a handy tool for testing various combinations of 

input parameters and investigate its effects on model output 

(RAYCHAUDHURI, 2008). 

Monte Carlo simulations became a popular tool for problems 

difficult to solve by analytical methods or for problems with costly, 

time-consuming or impractical experimentation (HARRISON, 2010). 

However, it also has disadvantages, mainly related to computational 

costs and the quality of results, which is related to the quality of the 

input parameters.  

Raychaudhuri (2008) presents a general methodology typically 

used for Monte Carlo simulations. This methodology is composed of 

four steps: static model generation, input distribution identification, 

random variable generation, and analysis and decision making of the 

simulation outputs. Each step is briefly presented in the following 

paragraphs and further details are referred to Raychaudhuri (2008). 

Static model generation addresses the underlying physics of the 

simulation. Mathematical expressions and relationships are developed. 

According to Raychaudhuri (2008), this step resembles the schema 

present in Figure 3.1. 
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Input distribution identification deals with the type of distribution 

each input parameter may have. According to Harrison (2010), common 

examples are: uniform, exponential, normal, and Poisson distributions. 

This step is supported by historical data of input parameters. 

Random variable generation forms a set of input parameters for 

the deterministic model. It takes random samples from the distribution 

defined in the previously step. Raychaudhuri (2008) highlights that this 

is the core step of a Monte Carlo simulation. Random variable 

generation is further explored in the next section, where a method 

known as Latin Hypercube Sampling is presented. 

Analysis and decision marking is performed after Monte Carlo 

simulations were run. Output parameters are statistically analyzed to 

provide confidence intervals of simulation results.  

3.2.2 Latin Hypercube Sampling  

Space-filling experimental designs aims to cover most of the 

input domain in cases where statistical assumptions about the 

relationship between input/output parameters of models may be scarce 

(VIANA, 2013). Most popular space-filling sampling methods are Latin 

Hypercube, orthogonal arrays and Hammersley designs (VIANA, 2013). 

This section focuses on the underlying concepts of Latin Hypercube 

Sampling (LHS) method and briefly overviews optimized forms of LHS.  

LHS method was initially developed by McKay, Beckman and 

Conover (1979). Based on the Latin square experimental design, it 

attempts to mitigate the confounding effects of experimental factors 

without increasing the size of the experiment. LHS aims to represent 

each value of a variable in the samples, independently on their values 

importance (CHENG; DRUZDZEL, 2000).  

Viana (2013) presents a formal definition of LHS, which is 

reproduced hereafter: 

Let the p x d (points x dimension) matrix 𝑋 =  [𝑥1 𝑥2… 𝑥𝑝]
𝑇

 be 

the experimental design matrix. Each column represents a variable and 

each row 𝑥𝑖 = [𝑥𝑖
(1)
 𝑥𝑖
(2)
… 𝑥𝑖

(𝑑)
] represents a sample.  

For example, let drag coefficient (𝐶𝑑) and engine efficiency (𝜂) 

be the two variables of interest (d = 2) for a sampling space of 10 points 

(p = 10). The dimensions of the design matrix X are 10 x 2: 
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               𝐶𝑑       𝜂

𝑋 =
1
⋮
10
[
0.45 0.88
⋮       ⋮

0.41 0.91
]
 

 

where each row is a design sample 𝑥𝑖 . For instance, 𝑥1 = [0.45 0.88 ] 
and  𝑥10 = [0.41 0.91 ] are the first and last design samples of the 

above matrix X. 

Aiming to assign values uniformly on the sampling space, LHS 

method divides each of d dimensions into p equal bins. For each bin, 

only one value is randomly assigned.  

Because of the randomness, it could or could not be the optimum 

location for a good space filling sampling space (VIANA, 2013). Figure 

3.3 illustrates this phenomenon. 

 
Figure 3.3: LHS examples with d = 2 dimensions and p = 10 points. Adapted 

from Viana (2013) 

Figure 3.3 presents examples of a LHS design for two variables 

(d = 2). Regarding space filling properties (a) illustrates a poor design 

and (b) illustrates much better design, since data is uniformly spread 

along the design space. Viana (2013) underlines that although unlikely 

to happen, LHS can have poor space filling properties such as the 

extreme case shown in Figure 3.3-a.  

In face of that, optimized forms of LHS were developed, often 

referred to as Optimized Latin Hypercube Sampling (OLHS). With the 

aim to improve space filling properties, focus is given to the 

optimization of point location on the design space. Generally, researches 
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addresses the optimization algorithm and the objective function to 

reduce computational costs, although only few addresses both at the 

same time (VIANA, 2013). 

Far from being trivial, Viana (2013) states that the optimization 

of the LHS is a combinatorial optimization problem with search space of 

order (𝑝!)𝑑. As an example, optimization of a LHS with d = 2 

dimensions and p = 20 points would have to select the best design from 

more than 1036 possible designs. For d = 3, possible combinations 

would raise to more than 1055  (VIANA, 2013).  

Detailed discussion about optimization algorithms of OLHS 

methods are beyond the scope of this work. To the interested reader, 

different approaches to optimize LHS methods are referred to Viana 

(2010) and Viana, Venter and Balabanov (2013). 

3.3 Modeling – general considerations 

When defining the model, Harrison (2010) emphasizes the 

importance of a careful analysis of the simulation aims. He suggests key 

points to be considered in defining a model: 

What are the desired outputs of the simulation? Modeling 

assumptions and level of complexity of models depends on the specific 

applications of the simulations. Different questions are answered with 

different simulation results. To define a good model one should consider 

the aim of simulation results (HARRISON, 2010).  

How accurate must the outputs be? Regarding the application, 

varying levels of accuracy are required. As an analogy with data 

acquisition in motorsports, engine temperature measurements may be 

gathered at 10 Hz with sufficient accuracy. On the other hand, due to the 

high-frequency nature of vehicle suspension systems, damper 

displacement may be logged at a frequency higher than 100 Hz 

(SEGERS, 2014). 

How exactly the object can/must be modeled? This topic 

addresses the level of detail of the model and the available 

computational capabilities. According to Harrison (2010), although a 

phenomenon could be modeled down to the finest level of detail, 

computational cost would make the simulation unfeasible for some 

applications. In summary, although an object can be modeled in such 

detail, it does not mean it must be modeled that way. 

How exactly input parameters are defined? As seen in Figure 3.1, 

mathematical models are feed with input data to generate outputs. A 
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simulation model is only feasible if its input parameters are measurable, 

which involves technological and economic factors. 

To illustrate, Harrison (2010) states that the most accurate 

weather simulation would consider interactions down to subatomic 

level, which is beyond the actual computational capabilities and ability 

to measure input data. Instead, simulations use fluid dynamics and 

thermodynamics with input data being the weather conditions measured 

at many locations around the world.  

The next section provides an overview of lap time simulations, 

where modeling strategies and its main application are discussed. 

3.4 Lap time simulations – an overview 

From an engineering standpoint, lap time simulation needs to 

model accurately the dynamic behavior of a racecar, predict lap times 

and have low computational costs to allow many configurations of a 

racecar to be tested within reasonable time (BRAYSHAL; HARRISON, 

2005).  

Lap time simulations follows into three categories: steady state, 

quasi-steady state (also referred to as quasi-static models) and transient 

models. Each modeling strategy are briefly described in the following 

paragraphs and are referred to Siegler, Deakin and Crolla (2000). 

Steady state models assumes the vehicle is in permanent 

equilibrium and its derivatives with respect to time are zero. For steady 

state simulations, various iterations are needed in order to converge to 

the equilibrium state after a steering input at a constant forward velocity, 

for example. These models are incapable to simulate trail braking 

maneuvers, since velocity and lateral acceleration are changing 

simultaneously and thus are inherent time dependent. 

Quasi-steady state models are similar of steady-state models 

except for the circuit parameterization strategy. Each corner is designed 

as a decreasing path of a series of constant radius turn. The aim of this 

strategy is to imitate an increasing steering towards the apex of the 

corner without solving transient equations. The vehicle limit of adhesion 

can be solved iteratively by steady-state equations for each segment of 

the corner or it can be accessed by an independently generated G-G 

diagram (BRAYSHAL; HARRISON, 2005). 

Transient simulations involves numerical integration of equations 

of motion with respect to time (BRAYSHAL; HARRISON, 2005). Non-

linear effects such as translational and rotational inertias, lateral and 

longitudinal weight transfer are considered. 
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Siegler, Deakin and Crolla (2000) compared a three-degree-of-

freedom steady state, quasi-steady and transient models for case of a J-

turn maneuver: at constant speed, and for a J-turn with combined 

braking and steering towards the corner (trail braking). 

 The three modeling strategies were found to be equivalent for the 

J-turn at constant speed. On the second case, however, the steady-state 

model was unsuitable to reproduce the transient maneuver in a realistic 

manner, since braking and steering were performed in two distinct 

phases.  

Vehicle response from the quasi-steady state simulation was a 

good approximation of the transient simulations. Similar conclusions 

were found for a more complex seven-degree-of-freedom vehicle model 

in Brayshaw & Harrison (2005), where a complete lap was simulated 

and the effects of racing line and center of gravity location were 

investigated.  

The next section presents the main concepts and literature 

recommendations on verification and validation of simulation models. 

3.5 Verification and validation  

Simulation environments, mathematical models and measurement 

tools are well established in the present days. However, there is a lack of 

methodological rigor on the validation procedures adopted by many 

vehicle dynamics simulations in the literature (KUTLUAY; WINNER, 

2014).  

Kutluay & Winner (2014) presents various definitions of 

verification and validation. In simple terms, they define verification as 

“building the model right” and validation as “building the right model”. 

For the American Institute of Aeronautics and Astronautics (1998 

apud SARIN et al., 2003), regarding computational fluid dynamics, 

verification “is the process of determining that a model implementation 

accurately represents the developer’s conceptual description of the 

model and the solution to the model”. 

From the same reference, validation is defined as “the process of 

determining the degree to which a model is an accurate representation of 

the real world from the perspective of the intended uses of the model”. 

Validation is related to the application of the model. A vehicle 

model valid for steady-state maneuvers, for example, may not be valid 

for ride comfort analysis. Kutluay & Winner (2014) state that a model is 

only valid within the design limits and the intended application and that 
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there will always be discrepancies between simulated and experimental 

data.  

The fact that randomness are an inherent part of some physical 

phenomena, and the fact that measurements of parameters and data 

gathering of a system behavior are prone to random errors put in check a 

definitive validation of a model. In fact, Kutluay & Winner (2014) 

affirm that absolute validity of a model is refuted by many experts in the 

literature. 

Although validation procedures exist, most of the applications of 

vehicle dynamics simulations rely only on visual comparison and 

subjective judgment of the results. In addition, often the development 

team of the model also decides subjectively whether the simulation is 

valid or not, which for Kutluay & Winner (2014) puts in question the 

credibility of these models. 

On the other hand, many authors consider subjective assessments, 

such as face validity, and visual techniques as an accepted method for 

model validation (JACHNER; BOOGAART, 2007). Based on expert 

knowledge, these methods evaluate how feasible the model is, and how 

close measured and simulated data are. (RYKIEL, 1996 apud 

JACHNER; BOOGAART, 2007). 

In conclusion, Kutluay & Winner (2014) point out that validation 

of vehicle dynamics simulation should consider the physical phenomena 

characteristics it aims to reproduce. This process includes planning the 

validation testing maneuvers, explicitly defining experimental 

procedures, accuracy criteria and validation metrics early in the design 

process.  

From extensive review provided by Kutluay & Winner (2014), it 

is observed that little attention is given by the literature to accuracy 

criteria and validation metrics of simulation. This matter is aggravated 

regarding lap time simulations, where validation is barely addressed. 

The next section deals with this topic. 

3.6 Accuracy metrics and criteria for simulation validation 

Most of lap time simulations are validated by visual comparison 

with experimental data. Although accepted by some experts, it does not 

yield to a tangible measure to compare models across the literature. 

Aiming to provide insights on how validation of lap simulations can be 

supported by statistic metrics, this section presents common deviance 

measures for validation used in other research areas.  
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To this work, only the most common measures for absolute 

scaled time-series are presented: mean absolute error (MAE), mean 

squared error (MSE) and root mean squared error (RMSE). 

The American Society of Mechanical Engineers (ASME) 

committee on verification and validation in computational solid 

mechanics (2004 apud SARIN et al., 2003) defines two steps for model 

validation: 

1. Quantitatively comparing the computational and 

experimental results for the response of interest; 

2. Determining whether there is an acceptable agreement 

between the model and the experiment for the intended use of 

the model. 

The first step deals with accuracy metrics to evaluate 

discrepancies of measured and simulation data. The second step 

addresses accuracy criteria to accept or reject simulation results.  

In Jachner & Boogaart (2007), various statistic measures are 

compared aiming to illustrate how they provide varying results 

evaluating common real-world problems. Although accuracy metrics are 

key for validating simulation results, Jachner & Boogaart (2007) point 

out that not only quantitative analysis are used, validation is commonly 

supported by expert knowledge to assess qualitatively the simulation 

accuracy.   

For processes having different velocities, shifts in time or 

systematic differences, qualitative evaluation is especially important 

because exclusive use of quantitative analysis could lead to misleading 

conclusions (JACHNER; BOOGAART, 2007). Figure 3.4 illustrates this 

scenario. 

 
Figure 3.4: Comparison of two models against experimental data. Adapted from 

Jachner & Boogaart (2007) 
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In Figure 3.4, three plots are presented: experimental data (a) and 

simulation results of model A (b) and model B (c). Both models A and 

B aims to represent the phenomenon for which experimental data is 

presented.  

In this simple example, humans would probably consider model 

A more accurate than model B. In contrast, a quantitative evaluation by 

the mean absolute error (MAE), defined by Equation 3.1, results in 

model B being more accurate than model A, which clearly 

underestimates the quality of model A (JACHNER; BOOGAART, 

2007).  

 𝑀𝐴𝐸 = 
1

𝑛
∑ |𝑦𝑡 − �̂�𝑡|

𝑛

𝑡=1
 (3.1) 

At this point, some considerations must be addressed. Correct 

selection of accuracy metric is key for correct assessment of simulation 

discrepancies. According to Jachner & Boogaart (2007), the reason most 

people would choose model A instead of model B is that human 

decision is based on identification of data patterns instead of numerical 

values.  

In this way, a robust metric should also include measures of data 

patterns. In some research areas, such as vehicle safety, this issue has 

already been addressed. Sarin et al. (2010), for example, developed a 

metric in which simulation errors were assessed by three independent 

measures associated with phase, magnitude and slope of the signal. 

In contrast, validation of lap time simulations is mainly 

performed based on expert knowledge by visual comparison of datasets; 

see Callea (2004), Velenis & Tsiotras (2005), Simon et al. (2008) and 

Dal Bianco & Lot (2015) for example.  

For time-series comparison, according to Jachner & Boogaart 

(2007), the most common deviance measures are: mean absolute error 

(MAE), defined by Equation 3.1, mean squared error (MSE), Equation 

3.2, and root mean squared error (RMSE), Equation 3.3. In these 

equations, 𝑦𝑡 is the experimental data and �̂�𝑡 is the simulation data at a 

given time, t. 

 𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑡 − �̂�𝑡)²

𝑛

𝑡=1
 (3.2) 

 𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑡 − �̂�𝑡)²

𝑛

𝑡=1
 (3.3) 
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Various types of discrepancies can take place whenever two sets 

of data are compared. Depending on application, such discrepancies 

may be critical or not. For instance, relative differences between 

simulation and actual data may be more important than the magnitude of 

datasets (JACHNER; BOOGAART, 2007).  

In statistics, many measures exists to access model accuracy. 

Chai & Draxler (2014) highlight that “statistics are just a collection of 

tools” and researches are in charge of the appropriate selection of these 

tools. Because deviance measures are defined differently, see Equations 

3.1 to 3.3, they are expected to provide different results, which leads to 

the observation that sometimes multiple measures are required to access 

detailed error evaluation (CHAI; DRAXLER, 2014). 

Two cases are illustrated in Figure 3.5: noisy data (a) and varying 

speed data (b), which is the closest case of lap time simulations. In this 

example, reference function is defined by 𝑓(𝑡) =   
3

2
. 𝑠𝑖𝑛 (2𝑡𝜋) + 0.75 

and 𝑔(𝑡) are special functions to represent real-world data.  

 
Figure 3.5: Measures of two sets of data. Noisy and varying speed datasets are 

considered in comparison to the reference data. Adapted from 

Jachner & Boogaart (2007). 

From Figure 3.5, RMSE has higher magnitude on both cases (a) 

and (b) compared with MSE and MAE, which was expected for the 

following reasons:  
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1. Whenever a number is smaller than the unit, the magnitude of 

its square root is greater than that number, in this case MSE < 

1 which leads to RMSE > MSE. 

2. MAE attributes the same weight to all errors while RMSE 

attributes greater importance to errors with larger absolute 

values. In this way, RMSE is by definition never smaller than 

MAE (CHAI; DRAXLER, 2014).  

From case (a) to case (b), all measures have risen in magnitude, 

which indicates an agreement on model error evaluation. However, 

MAE increased 80.7%; MSE, 309%; and RMSE increased 78.8%. 

Considering the magnitude of MSE was roughly 1/3 of MAE and RMSE 

in case (a), one can conclude MSE is less sensitive to noisy data than 

RMSE and MAE are. 

Figure 3.6 illustrates another two cases: shifted datasets (a) and 

combined effects of shifted and scaled data (b). 

 
Figure 3.6: Measures of two sets of data. Shifted and shifted + scaled datasets 

are considered in comparison to the reference data. Adapted from 

Jachner & Boogaart (2007). 

According to Figure 3.6, MAE and RMSE are similar for shifted 

data (a). In the case of shift and scaled data (b), RMSE magnitude 

slightly increases as MAE decreases 10%.  MSE is almost insensitive to 

changes in cases (a) and (b) and remains about constant. Again, the three 

measures agreed on error evaluation. 



40 

 

In this section, common deviance measures were presented and 

discussed. As stated earlier, each measure emphasizes different aspects 

of error. For this reason, Chai & Draxler (2014) emphasizes that a 

combination of measures such as RMSE and MAE are often required to 

evaluate model performance.  

The assessment of simulation error, presented in the results 

section, uses RMSE because it is more sensitive to absolute differences 

than MAE is. However, an extensive discussion about proper deviance 

measures for lap time simulations is beyond the scope of the present 

work. 

The next chapter presents materials and methods used in this 

research. Focus is given to the vehicle parameters estimation with the 

help of Monte Carlo simulations. 
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4 MATERIALS AND METHODS 

We should nevertheless always keep in mind that simulation 

is merely a tool and that it should be used as such. The 

results produced by the simulation software are as accurate 

as the accuracy of the modeled parameters.  (SEGERS, 

2014). 

4.1 Introduction 

The Brazilian touring car championship Brasileiro de Marcas, 

started in 2011 as one of the major Brazilian racing categories. The 

championship promotes vehicle manufactures by racing silhouette 

racecars resembling compact sedans such as Toyota Corolla, Renault 

Fluence, Ford Focus and Chevrolet Cruze. Besides the marketing 

appeal, the championship aims to be a driver’s competition instead of 

manufacture’s competition. For this reason, technical rules provide little 

room for parts development; racecars share identical tubular spaceframe 

concept, powertrain and aerodynamic appendices. Thus, racing teams 

focus on driver performance, suspension and aerodynamic adjustments 

at race events.  

In this chapter, materials and methods of this research are 

presented. Focused on the method, Figure 4.1 gives an overview of the 

speed profile simulation procedure adopted. 

 
Figure 4.1: Overview of the method used to simulate the speed profile of the 

racecar. 
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To perform the simulations, a vehicle and a circuit model were 

developed. Experimental data from racetrack and literature review 

supported the model development and its assumptions; the input vehicle 

parameters estimation; simulation validation procedures; and the circuit 

parameterization.  

In the following sections, the data acquisition system and the 

racecar from which data were acquired are first presented followed by a 

description of the coordinate system used in this work. Later, vehicle 

model and its assumption are exposed alongside vehicle and circuit 

parameterization. 

4.2 The racecar 

A 2016 Toyota Corolla competing at Brasileiro de Marcas 

championship was the source of experimental data for this research 

(Figure 4.2). Considering the rules do not allow unofficial tests, data 

available for this work comes exclusively from the previously race 

events and literature review.  

 
 

Figure 4.2: 2016 Toyota Corolla competing at Brasileiro de Marcas 

championship (BARROS, 2016). 

The 2016 season provided eight events held in seven different 

Brazilian circuits from which data were gathered. 2016 vehicles were 
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slightly modified from the previously years, with the most significant 

change being a lower limit for engine maximum speed. For this reason, 

only 2016 data were used in order to avoid diverged data on the 

parameter estimation process (discussed in section 4.7). Experimental 

data were divided into training data (from which the model input 

parameters were estimated) and test data (data used to test the validity 

of the model).  

The data acquisition system of the racecar consists into a MoTeC 

SDL3 dashboard, which has 16 MB of logging memory and an 

integrated 3-axis accelerometer (± 5G) logged at 25 Hz. The dashboard 

also records data from an analogue steering angle sensor (25 Hz) and a 

GPS MoTeC L10 connected via RS-232 serial port (10 Hz). Although 

the GPS antenna is mounted externally, its aerodynamics effects are 

neglected due to the small size of the unit (48 mm x 41 mm x 14 mm). 

In addition, there are sensors logged from the MoTeC M400 ECU via 

CAN Bus communication at various sampling rates, mainly from the 

engine and gearbox. To the interest of this work, there are also hall 

effect sensors at the rear wheels (25 Hz), throttle position, and engine 

speed (20 Hz) measurements. 

All vehicles of the championship are front-wheel-drive powered 

by a Berta TR4 engine. This is a Ford Duratec® based engine, naturally 

aspirated, 4 cylinders with a 2300 cm³ of total displacement. Due to the 

nature of this specified racing class, engines are sealed to prevent 

modifications.  
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4.3 Vehicle model 

Figure 4.3 presents the vehicle coordinates system used in this 

research. 

 
Figure 4.3: Right hand vehicle coordinate system. 

Defined according to Sayers (1996), it is a right hand coordinate 

system with forward positive X-axis, Y positive to the left and Z 

positive upward, with its origin located on the vehicle center of gravity 

(C.G).  

The velocity profile of the vehicle was simulated in this work 

based on the assumption of a point-mass being driven at the boundaries 

of the G-G diagram. The vehicle model consists of a point-mass reacting 

to external forces limited by its tire/road coefficient of friction (µ). This 

coefficient µ is assumed to limit both, lateral (𝑎𝑦) and longitudinal (𝑎𝑥) 

car accelerations. Furthermore, µ is considered constant, leading to the 

following assumptions: 

1. The grip available at the racetrack does not change. In a real 

circuit, however, different locations of the racetrack may 

have varying levels of grip. 

2. The constant coefficient of friction acts as the tires were 

operating at its optimum slip angle and slip ratios, thus 

generating maximum lateral and longitudinal forces. 

3. Any changes in tire load neglects changes of the coefficient 

of friction. Again, a simplification because coefficient of 

friction is function of load. As load increases, µ also 

increases. Changes in tire load are mainly related to 
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aerodynamic lift and lateral/longitudinal load transfer, both 

neglected in this work. 

 

Figure 4.4 summarizes the vehicle model assumptions by its G-G 

diagram. 

 
Figure 4.4: G-G diagram modeling of the vehicle in function of speed. 

Because the coefficient of friction is constant, the G-G diagram 

has constant radius (Figure 4.4) except for the upper part of the diagram, 

which is trimmed by the engine power, dependent of speed because of 

external resistance forces such as aerodynamic drag.  

Equation 4.1 express the assumed coefficient of friction (µ) as 

function of the vehicle maximum lateral acceleration.   

 µ = µ𝑦 =
𝐹𝑦

𝑚.𝑔
= 
𝑎𝑦

𝑔
 (4.1) 

In this equation,  

µ – assumed coefficient of friction [-]; 

µ𝑦 – lateral coefficient of friction [-]; 

𝐹𝑦 – lateral force generated by the tires [N]; 

𝑚 – overall mass of the vehicle [kg]; 

𝑎𝑦 – lateral acceleration [m/s²]; 

g – gravitational acceleration [m/s²]. 
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According to Segers (2014), although simple, a point-mass 

vehicle model is capable to generate a velocity profile in a given circuit 

with satisfactory accuracy to draw conclusions about the characteristics 

of a circuit. In this research, vehicle model was implemented by the 

means of power flow in the AMESim® software. The principles behind 

the modeling process are explored in Figure 4.5, where a mass 

component in a multiport simulation environment is shown as well as its 

internal variables. 

 
Figure 4.5: Internal variables of a mass component in the multiport software 

AMESim®. 

The main concept of a multiport-domain simulation environment 

lies on the power flow between components, given by the product of 

flow and effort variables (SILVA, 2005). In the example above, the 

inputs (forces in both ports) are the effort variables and the outputs 

(velocity) are the flow variables. Based on the Second Newton’s Law, 

this component gives also displacement and acceleration from the 

integration and derivative of the velocity output. 

Figure 4.6 shows the vehicle model concept implemented in the 

multiport-domain software AMESim®: 

 
Figure 4.6: Vehicle model. 

In this model, the equation of motion is defined as follows: 

 𝑚. 𝑎𝑥 = 𝐹𝑒 − (𝐹𝑏+ 𝐹𝑑 + 𝐹𝑟)   (4.2) 

where, 

𝑎𝑥 – forward acceleration [m/s²]; 

𝐹𝑒 – thrust force [N]; 
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𝐹𝑏 – braking force [N]; 

𝐹𝑑 – drag force [N]; 

𝐹𝑟 – rolling resistance force [N]. 

4.3.1 Thrust force  

For a low powered vehicle, most part of the time longitudinal 

acceleration is limited by the engine and not by the tires (SEGERS, 

2014). Based on this statement, this work considers that wheel spin does 

not occur when throttle is applied. This assumption allows designing a 

driver controller in such manner that thrust force from engine is always 

present, whenever forward acceleration is not limited by braking and/or 

trail braking on cornering maneuvers. In other words, the throttle either 

is off or applied in wide-open throttle (WOT). 

The thrust force (𝐹𝑒) is given by Equation 4.3, and the model 

implementation of the powertrain is shown in Figure 4.7 

 𝐹𝑒 =
𝑇. 𝑖𝑛
𝑅𝑅
   (4.3) 

where, 

𝑇 – engine torque [N.m]; 

𝑖𝑛 – gear ratio [-]; 

𝑅𝑅 – effective rolling radius of the tire [m]. 

 
Figure 4.7: Powertrain model. 

The powertrain model shown in Figure 4.7 is also a product of 

manipulation of effort and flow variables, embedded in the equations of 

each component. However, instead of translational mechanics presented 

before, the power is given by rotational mechanics where the effort 

variable is a torque [N.m] and flow variable is an angular velocity 

[rad/s]. 
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In this model, engine torque is taken from a lookup table as 

function of engine speed. This torque is multiplied by a gear ratio 

according to the engaged gear on the gearbox and is transmitted to the 

traction wheels as power from the driveline torque (effort variable) and 

the wheel angular speed (flow variable). Finally, thrust force is derived 

from the effective rolling radius of the tires. Inertia and rigidity of the 

drivetrain components are necessarily included to respect the causality 

between physical components in the multiport environment, although 

their values are set negligible. 

4.3.2 Braking force 

According to the concept of tire friction circle, maximum braking 

force is achieved when braking in a straight line and must decrease as 

lateral force builds up. This phenomenon happens to accommodate the 

longitudinal and lateral forces to the available tire grip. In fact, grip is 

the maximum force available at the tires (𝐹𝑡) and is function of lateral 

force (𝐹𝑦) and braking force (𝐹𝑏) vectors. When braking force is 

maximum, lateral force is zero and vice versa. Maximum tire force is 

calculated by Equation 4.4, lateral force by Equation 4.5 and the relation 

between these three forces is presented by Equation 4.6 

 𝐹𝑡 = 𝑚.𝑔. µ (4.4) 

 𝐹𝑦 = 
𝑚. 𝑣𝑐

2

𝑅
 (4.5) 

 𝐹𝑡
2 = 𝐹𝑦

2 + 𝐹𝑏
2   ∴  (𝑚. 𝑔. µ)2 = (

𝑚. 𝑣𝑐
2

𝑅
)

2

+ 𝐹𝑏
2 (4.6) 

where, 

𝑣𝑐 – maximum cornering velocity [m/s]; 

𝑅 – cornering radius [m]. 

 

Isolating braking force (𝐹𝑏) from Equation 4.6, its value is given 

by Equation 4.7 as function of lateral and total tire forces. 

  𝐹𝑏 = √(𝑚. 𝑔. µ)
2 − (

𝑚. 𝑣𝑐
2

𝑅
)

2

 (4.7) 
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When a vehicle starts to negotiate a corner, lateral force starts to 

build up as braking force starts to decrease until it reaches zero at the 

apex of a corner. At this moment, only lateral force (𝐹𝑦 @𝑎𝑝𝑒𝑥) is acting 

on the tires and it takes all available force(𝐹𝑡). Thus, the maximum 

speed that a vehicle could negotiate a given corner, in this paper called 

maximum cornering velocity (𝑣𝑐), can be isolated from Equation 4.8 and 

defined by the coefficient of friction (µ), and the corner radius (𝑅) such 

as: 

  𝐹𝑦 @𝑎𝑝𝑒𝑥 = 𝐹𝑡   ∴   
𝑚. 𝑣𝑐

2

𝑅
= 𝑚. 𝑔. µ  

𝑦𝑖𝑒𝑙𝑑𝑠
→     𝑣𝑐 =  √𝑔. µ. 𝑅 (4.8) 

where, 𝐹𝑦 @𝑎𝑝𝑒𝑥 is the lateral force at corner apex. 

4.3.3 Drag force 

Drag force is the only aerodynamic effect acting on this point-

mass vehicle model. It is a vector force on X-axis in the negative 

direction (against thrust force) and its magnitude is calculated by the 

classic equation (KATZ, 1995): 

 𝐹𝑑 =
1

2
. 𝜌. 𝐶𝑑. 𝐴. 𝑣𝑥

2 (4.9) 

where, 

𝜌 – air density [kg/m³]; 

𝐶𝑑 – drag coefficient of the car [-]; 

A – frontal area of the car [m²]; 

𝑣𝑥– forward velocity [m/s]. 

4.3.4 Rolling resistance 

According to Jazar (2008), a second order polynomial equation is 

adequate to fit experimental data of rolling resistance tests. This force is 

calculated by Equation 4.10 as function of a rolling resistance 

coefficient (𝑢𝑟), given by Equation 4.11, and the vertical force applied 

on the tires. In this work, the vertical force will be the entire mass of the 

vehicle and is kept constant over the time: 

 𝐹𝑟 = 𝑢𝑟. 𝑚. 𝑔 (4.10) 

 𝑢𝑟 = 𝑢0 + 𝑢1. 𝑣𝑥
2 (4.11) 



50 

 

where, 𝑢0 [−] and 𝑢1 [
𝑠2

𝑚2
] are experimental coefficients to fit rolling 

resistance data.  

According to Jazar (2008), typical values are 𝑢0 = 0.015 and 

𝑢1 = 7𝑒
−6. As these values have been applied to passenger cars tires, 

they are used here due to the lack of modern racing tires parameters. 

4.3.5 Driver´s model for braking strategy 

Braking strategy stands for how the vehicle is controlled to 

optimize its braking capabilities in function of a circuit characteristic. 

When a driver is approaching to a corner, he brakes to reduce the 

vehicle speed at a certain distance from the corner apex. This distance 

(d) is function of the braking force, vehicle mass, forward vehicle speed 

(𝑣𝑥) and the maximum cornering velocity (𝑣𝑐). Equation 4.12 applies: 

 𝑑 =  
(𝑣𝑥

2 − 𝑣𝑐
2)

2. 𝐹𝑏
. 𝑚 (4.12) 

Approaching a corner, this braking strategy yields to two 

different scenarios. The first scenario is illustrated in Figure 4.8: 

 
Figure 4.8: Minimum braking distance longer than the distance to corner apex. 

Minimum braking distance (𝑑) is longer than the distance (𝑠) 
from the beginning of the corner (corner entry) to its apex. For this 

reason, the driver should anticipate the braking phase at a distance (𝑙) 
before the corner entrance point. Otherwise, at corner apex the vehicle 

will exceed the tires limit of adhesion. 

The second scenario is illustrated in Figure 4.9: 
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Figure 4.9: Minimum braking distance shorter than the distance to corner apex. 

Minimum braking distance (d) is shorter than the distance (s) 

from the beginning of the corner to its apex. Therefore, the driver delays 

the braking phase by a distance (l) from the corner entrance. 

4.4 Vehicle parameters  

This section presents a literature review on typical vehicle 

parameters aiming to provide initial conditions for the parameter 

estimation process presented later in this section. 

4.4.1 Drivetrain 

Racecars of the Brasileiro de Marcas championship use a six 

speed sequential gearbox Xtrac® P426. Gear ratio changes are not 

allowed and the only set of gears available to the teams is presented 

below: 

Table 4.1: Gear ratios allowed for the racecars.  

Gear number Gear Pair Gear Ratio (𝒊𝒏) 

1st 13/39 𝑖1 = 3.00 

2nd 15/30 𝑖2 = 2.00 

3rd 14/22 𝑖3 = 1.57 

4th 18/24 𝑖4 = 1.33 

5th 19/23 𝑖5 = 1.21 

6th 18/20 𝑖6 = 1.11 

Final Ratio (bevel) 14/46 𝑖𝑓 = 3.285 

 

Equation 4.13 defines gear ratio (𝑖𝑛) presented in Table 1: 
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 𝑖𝑛 =
𝑍𝑑𝑟𝑖𝑣𝑒𝑛
𝑍𝑑𝑟𝑖𝑣𝑒

 (4.13) 

where, 

𝑍𝑑𝑟𝑖𝑣𝑒𝑛 – number of teeth of driven gear [-]; 

𝑍𝑑𝑟𝑖𝑣𝑒 – number of teeth of drive gear [-]. 

 

To estimate transmission losses, Irimescu, Mihon and Pãdure 

(2011) conducted a study using a chassis dynamometer and FWD 

passenger car equipped with a manual gearbox. They concluded that 

drivetrain efficiency depends on both vehicle speed and gear ratio. 

Furthermore, drivetrain efficiency decreases as gear ratio decreases. 

Similar results were found by other researches such as in Changenet, 

Oviedo-Marlot and Velex (2006). The results of Irimescu, Mihon and 

Pãdure (2011) are summarized in Table 4.2: 

Table 4.2: Drivetrain efficiency as function of gear ratio and engine speed for a 

FWD production sedan. (IRIMESCU; MIHON; PÃDURE, 2011). 

Gear number Engine Speed (rpm) Gear Ratio (𝒊𝒏) Efficiency (𝜼) 

2nd 5500 𝑖2 = 2.05 𝜂 ≅ 91% 

3rd 5500 𝑖3 = 1.39 𝜂 ≅ 89% 

4th 5500 𝑖4 = 1.03 𝜂 ≅ 87% 

5th 5500 𝑖5 = 0.79 𝜂 ≅ 72% 

 

Aiming for accuracy, drivetrain efficiency should be modeled in 

function of gear ratio. However, to reduce the number of variables on 

the parameter estimation process, this study neglects gear ratio 

dependency and considers only an overall drivetrain efficiency. Because 

of a reasonable variety of slow and fast corners, Ayrton Senna Circuit 

was chosen as training data to provide a reasonable range of engine 

speeds. Figure 4.10 presents a histogram of a qualifying lap at Ayrton 

Senna Circuit, GO, Brazil. 
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Figure 4.10: Histogram of engine speed at Ayrton Senna Circuit. 

Engine speed is represented by bins and the Y-axis is the 

proportional time spent during the lap. Most part of the time, the engine 

operates between 5200 to 6700 rpm, which narrows the window for the 

overall efficiency estimation. Considering the engine speed is limited at 

circa 6670 rpm, the drivetrain overall efficiency of 80% was estimated 

as a baseline for the parameter estimation. 

4.4.2 Effective Tire Rolling Radius 

The effective rolling radius was calculated based on data gathered 

at previously race events. Figure 4.11 shows a scatter plot of the engine 

speed [rpm] versus vehicle speed [km/h] during a 25 laps race.  
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Figure 4.11: Engine speed [rpm] versus vehicle speed [km/h].  

In this figure, the light grey scatter is the raw data from data 

acquisition system, the dark grey scatter is the filtered data for up 

shifting, and the black line shows the drivetrain model. 

This plot gives six curves, one for each engaged gear. The 

inclination of each curve represents the total gear ratio. Theoretically, 

each scatter plot would fit a unique line. However, mainly due to wheel 

slip and lock up, the traces are sparse (SEGERS, 2014). 

Figure 4.11 illustrates this fact; raw data gives different gear 

ratios due to wheel slip at braking. Therefore, to proper calculate the 

effective rolling radius, one needs first to acquire the effective gear ratio 

of the car for up shifting only. Raw data was filtered to exclude engine 

and vehicle speeds matching negative longitudinal acceleration 

(braking).   

Finally, each gear ratio was fitted to the scatter traces by a linear 

polynomial regression and the effective rolling radius could be isolated 

using Equation 4.14 (JAZAR, 2008): 

 𝑟𝑒 =
𝑖𝑛 .  𝑖𝑓 .  𝑣𝑥

 𝜔
 (4.14) 

where,  

𝜔 – engine speed [rad/sec]; 

𝑖𝑛 – gear ratio [-]; 
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𝑖𝑓 – final ratio [-]. 

4.4.3 Aerodynamic drag 

As an initial guess for the parameter estimation, a literature 

survey was conducted to find typical values of 𝐶𝑑 for a touring racecar. 

Table 4.3 summarizes the data collected. 

Table 4.3: Typical values of drag coefficient for a touring racecar. 

Vehicle model Drag (𝑪𝒅) Reference 

1995 BMW M3 FIA Supertouring 0.300 ¹ (KATZ, 1995) 

1995 Dodge Neon Challenge 0.336 ¹ (KATZ, 1995) 

2006 WRX Subaru STi 0.413 ¹ (MCBEATH, 2013) 

2016 BTCC Subaru Levorg 0.441 ¹ (MCBEATH, 2016) 

20XX Ford Focus TC2000 0.468 ² ∗ (OPTIMUMG, 20XX) 

20XX Ford Focus TC2000 0.568 ³ ∗ (OPTIMUMG, 20XX) 

¹ wind tunnel data 

² coast down test (rolling resistance calculated with an inertial unit data) 

³ coast down test (rolling resistance measured by a wheel force transducer) 

* The authors of OptimumG (20XX) disclosure about the accuracy of the data since there 

was not sufficient runs to perform a statistical significance analysis. 

 

According to Table 4.3, 𝐶𝑑 varies from 0.30 up to 0.44 on wind 

tunnel tests, and achieves higher values for a TC2000 racecar 

instrumented with wheel force transducer and an inertial unit. Due to 

diverged 𝐶𝑑 values (difference of 21%) encountered in OptimumG 

(20XX), initial guess of 𝐶𝑑 = 0.40 was set based on wind tunnel tests 

only. However, TC2000 𝐶𝑑 coefficients were included in the design 

exploration (section 4.7.1) with the aim to consider the outliers found in 

the literature. 

Another parameter affecting drag force is vehicle frontal area, in 

this work estimated with the help of a computer-aided design (CAD) 

software. This process is illustrated in Figure 4.12: 
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Figure 4.12: Calculation of the frontal area with the help of a CAD software.  

Frontal area was computed with the help of sketch lines scaled by 

the front bumper width, which is specified by rules. From this 

approximation, a frontal area of A = 2.1 m² was calculated. 

4.5 Circuit model 

This section explains how the circuit parameterization was 

performed for the new circuit without previously logged data. Aiming to 

test the method, parameterization of the known Ayrton Senna Circuit – 

GO was performed first using a CAD software and GPS logged data.  

GPS coordinates were exported to Google Earth® from which 

circuit map and the driver racing line could be overlaid. This process 

resulted in a scaled image (Figure 4.13) imported to a CAD software. 

Then, racing line was broken down into a series of arcs of constant 

radius and straight lines.  
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Figure 4.13: Circuit parameterization based on a CAD software and GPS logged 

data. Ayrton Senna Circuit – GO, Brazil. 

Because circuit parameterization was given by a series of arc 

radius in function of distance, straight lines were set with an arbitrary 

radius large enough to not limit forward acceleration due to the tire limit 

of adhesion. 

To simulate progressive steering increase towards corner apexes, 

corners are split into a series of decreasing arc radius (SIEGLER; 

DEAKIN; CROLLA, 2000). However, this is a time consuming process 

if performed manually in a CAD software. Aiming to reduce the number 

of sectors, a different approach was taken in this work: the racing line 

was split into coarse sectors of constant radius instead of decreasing 

radius. Then, with the help of Pandas library in Python, this data was up-

sampled 16 times by a linear interpolation and further smoothed by a 

rolling mean function with a window size of 20 observations. The result 

of this process, named Rolling Mean Track Data, is compared with raw 

track data in Figure 4.14. 
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Figure 4.14: Rolling mean method of circuit parameterization.  

Parameterization of the circuit was performed in two steps. Raw 

track data acquired from a CAD software and further data treatment in 

order to have a realistic progressive corner radius. 

Figure 4.15 illustrates the circuit parameterization in CAD of the 

Cristais Circuit – MG, Brazil. 

 
 

Figure 4.15: Circuit parameterization with the help of a CAD software and 

driver’s expertise to determine the racing line. Cristais Circuit – 

MG, Brazil. 
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For the new circuit, the parameterization process was performed 

in a similar manner. The difference relies on the lack of GPS data to 

determine the driver racing line. Thus, the racing line was drawn with 

the help of driver’s expertise. 

4.6 Target accuracy 

The first step in design exploration was to determine the target 

accuracy for the simulation results (presented in Chapter 6), in this work 

defined by the root mean squared error. As stated before, the aim of this 

model is to have an approximation of the speed profile of a new circuit. 

In this way, the model must output an overall speed profile independent 

of factors such as tire degradation and fuel consumption along the race. 

In a best-case scenario, it would output an average speed profile along 

the race.  

Tire degradation is mostly related to tarmac characteristics, which 

is difficult to account for a new circuit. In this way, accuracy criteria 

was based on vehicle mass variation over the championship, which 

includes fuel consumed during the race and a handicap system imposed 

by the Brasileiro de Marcas championship rules.  

The handicap system depends on the championship stands, and 

can possibly change a driver’s handicap at each race event. The aim of 

the handicap system is to balance the performance of the competitors in 

order to equalize changes of winning. It specifies vehicle ballasts for the 

top eight drivers. The championship leader carries 80 kg of ballast; 

second place carries 70 kg, third place 60kg and so on.  

Accuracy criteria were defined by a design of experiments (DoE) 

(ANTONY, 2014) with the aim to output the speed profile of a vehicle 

for a given circuit as function of the vehicle mass. The design of 

experiments setup is shown in Table 4.4. 

Table 4.4: Design of experiments setup to determine target accuracy of the 

model.  

Model Number Description 𝒎 [kg] 

1 Minimum Value 1090 

2 Center Value (baseline) 1150 

3 Maximum Value 1210 

 

To explore the model sensitivity, a minimum vehicle mass 

specified by the rules, 1090 kg, was set as minimum value for the 
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experiment. To this minimum value, 80 kg of ballast and 40 kg of fuel 

was added totaling 1210 kg, which represents the maximum value of 

Table 4.4. Calculated by Equation 4.15, the target accuracy was defined 

by the root mean squared error (RMSE) between models 1 and 3: 

 𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦1 − 𝑦3)²

𝑛

𝑡=1
 (4.15) 

where 𝑦1 is the vehicle speed of model 1, 𝑦3 is the vehicle speed of 

model 3, and t is the time step.  

Figure 4.16 presents the results from the DoE study.  

 
Figure 4.16: DoE study for the target accuracy of Ayrton Senna Circuit – GO 

simulations. a) Speed profile of models 1, 2 and 3. b) Residual 

values between model 1 and 3. 

From the speed profile of models 1 and 3, the target accuracy 

RMSE = 242.47 km/h was calculated for the Ayrton Senna circuit 

simulations. 

4.7 Parameter estimation 

Validation can be performed by comparing results of simulation 

with data collected from field experiments. In this respect, additional 
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attention must be given to model input parameters (e.g. moments of 

inertia, aerodynamics coefficients, engine curves, tire parameterization) 

and naturally, such scenario requires a compromise between model 

complexity and feasibility to measure those input parameters. In fact, 

testing is difficult, some are too costly (e.g. tire testing), time consuming 

(e.g. endurance testing), or, in motorsport championships, unofficial 

circuit testing is often outlawed by rules. 

To deal with lack of data, parameter estimation is an alternative 

to determinate unknown input parameters for vehicle dynamics models. 

A variety of techniques exists to accomplish this task (PRONZATO; 

WALTER, 1997). In this section, a parameter estimation using a Monte 

Carlo method is presented. This technique performs several simulations 

within a specified range of input parameters to evaluate the error 

between experimental and simulated data. To reduce computational cost, 

a design exploration analysis was firstly performed to find out which 

parameters have greater influence on model error. Then, these 

parameters were carried on to the Monte Carlo method. 

4.7.1 Design exploration 

According to Witten, Eibe and Mark (2011), a model with too 

many parameters relative to the number of training instances can 

become “too nonlinear”. It means that the model could perfectly fit a 

training data due to its many degrees of freedom and not because the 

model correct represents the physical phenomena. Such a model will 

perform very well on training data but will perform poorly on test data. 

This phenomenon is known as overfitting, and can be minimized using 

structurally simpler models with fewer parameters (WITTEN; EIBE; 

MARK, 2011). 

As an attempt to reduce model complexity, a design of 

experiments was performed aiming to investigate the effects of input 

parameters change on simulation error. Simulations were benchmarked 

by the baseline model of the accuracy criteria (Model 2 from Table 4.4). 

The design of experiments setup is shown in Table 4.5. 

Table 4.5: Design of experiments setup to investigate simulation errors. 

Parameter Unit 
Low Star 

Level 

Low 

Level 

Center 

Value 

High 

Level 

High Star 

Level 

𝜇0 [-] 0.05 0.010 0.015 0.020 0.025 

𝜇1 [s²/m²] 5𝑥10−6 6𝑥10−6 7𝑥10−6 8𝑥10−6 9𝑥10−6 

𝐶𝑑 [-] 0.20 0.30 0.40 0.50 0.60 
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𝑢 [-] 1.00 1.20 1.40 1.60 1.80 

𝜂 [-] 0.70 0.75 0.80 0.85 0.90 

 

The DoE study used in this research comprises a full factorial 2𝑁 

design matrix for the high and low levels and 2.𝑁 + 1 extra runs for the 

other parameters. Where N is the number of parameters. In this 

work, 𝑁 = 5, the DoE study ran 2𝑁 + 2.𝑁 + 1 = 43  simulations. 

Center values were assigned as the initial guesses taken from the 

literature survey presented in section 4.4, while high, low and star levels 

were set aiming to explore the outliers encountered on literature. Results 

of the DoE study are presented by a Pareto Diagram shown in Figure 

4.17.  

 
Figure 4.17: Pareto diagram of the input parameters. Effects of each parameter 

on simulation error is presented. 

The effects of input parameters on simulation error is presented 

by the diagram above. Negative effects means that if a parameter 

decreases, model error also decreases (e.g. if 𝐶𝑑 is reduced, model error 

also reduces). Positive effect error means that if a parameter increases, 

model error also increases (e.g. if 𝑢 rises, the model error rises too).  

From this diagram, some conclusions can be drawn. Coefficient 

of friction (𝑢), driveline efficiency (𝜂) and drag coefficient (𝐶𝑑) account 

for more than 85% of effects on model error. Rolling resistance 
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coefficients 𝜇0 and 𝜇1 account for the other 15%. Following the 

recommendation of Witten, Eibe and Mark (2011) to avoid overfitting 

by using simpler models, rolling resistance coefficients were excluded 

from the parameter estimation process because they have much less 

influence on model error compared with the other parameters.   

4.7.2 Monte Carlo parameter estimation 

The parameter estimation was supported by the Monte Carlo 

method. In this process, simulations of the vehicle speed profile were 

performed with different values of drag coefficient (𝐶𝑑), friction 

coefficient (𝜇) and the driveline efficient (𝜂). The basic idea of the 

method was to run simulations enough to test many combinations of 

input parameters and its effects on simulation error. 

Simulation error was evaluated by a cost function, calculating the 

sum of squared errors, similar to the DoE presented before (Equation 

4.15). However, instead of calculating simulation error from a 

benchmark model, error was calculated against training data, which was 

taken from a flying lap of a qualifying session at Ayrton Senna Circuit – 

GO, Brazil. 

The input parameters for these simulations came from pseudo-

random values generated by an Optimized Latin Hypercube Sampling 

(OLHS) method. This method gives a uniform sampling and therefore, 

reduces the number of simulations needed in order to cover a high 

number of parameter combinations.  

Table 4.6 shows input parameters for the experiments given by a 

target mean value and standard deviation of the samples. 

Table 4.6: Design of experiments setup to determine target model accuracy. 

Parameter 
Mean Value 

Target / Result 

Standard Deviation 

Target / Result 

𝜂 0.80 / 0.80 0.05 / 0.049 

𝐶𝑑 0.40 / 0.40 0.05 / 0.049 

𝑢 1.20 / 1.20 0.12 / 0.119 

 

Table 4.6 presents target values and results of the OLHS method 

for a sampling space of p = 1000 combinations of parameters. The 

number of samples p was arbitrary chosen after an unsuccessful attempt 

to achieve the targets with p = 300 samplings. Even though p = 1000 

samplings produced the desired outcome, a lower sampling space might 
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be more efficient, although this topic is not addressed in the present 

research. 

Each combination of parameters generated by the OLHS method 

was carried on to run the Monte Carlo simulations. Each of the 1000 

simulations contained a set of input parameters. Individual results were 

collected as function of the sum of squared errors. In this way, a 

parameter could be estimated based on its corresponding error (e.g. the 

estimated parameter would be a value resulting in the smallest error). 

However, when each isolated parameter is assigned based on its 

corresponding error, the error effect of other parameters are not being 

considered. Therefore, there is a risk that specific combinations of 

parameters are potentially overfitting the model, which results in 

misleading small errors.  

To deal with this problem, the density of parameters values and 

its effects on model error were taken into account. Figure 4.18, Figure 

4.19 and Figure 4.20 are scatter plots of the simulations performed by 

the Monte Carlo method. The density of each scatter plot is given by the 

size of each grey circle. The key point was assigning the estimated 

parameter to the minimum error given by the cloud boundary (dashed 

line). 

Figure 4.18 presents the effects of drag coefficient on simulation 

error: 
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Figure 4.18: Density distribution of drag coefficient along the Monte Carlo 

optimization process and its effects on model error. 

In Figure 4.18, not surprising small errors occurs where the 

biggest density of drag coefficient 𝐶𝑑 are close to the literature typical 

values of 𝐶𝑑 ≈ 0.40. As this value diverges, model error increases. The 

sparse cloud of errors is probably due to random combinations of 𝐶𝑑, 𝜂 

and 𝑢 that, as it can result in misleading small errors, it can also lead to 

misleading bigger errors. 

Similar to Figure 4.18, Figure 4.19 presents the effects of the 

tire/road coefficient of friction on simulation error: 



66 

 

 
Figure 4.19: Density distribution of friction coefficient along the Monte Carlo 

optimization process and its effects on model error. 

As expected, density distribution for small errors is concentrated 

in a smaller range of parameters (roughly, 1.15 < 𝑢 < 1.25). This fact 

was also shown in the Pareto diagram (Figure 4.17) where the friction 

coefficient alone takes more than 40% of effects on model error. In 

other words, this model is very sensible to changes in grip level of the 

circuit. This aspect can be a difficult issue to overcome while estimating 

a new circuit, since there is no chance to fine-tune grip level beforehand. 

Finally, the effects of drivetrain efficiency on simulation error are 

presented in Figure 4.20: 
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Figure 4.20: Density distribution of drivetrain efficiency along the Monte Carlo 

optimization process and its effects on model error. 

According to Figure 4.20, drivetrain efficiency around 80% 

produces smaller effects on model error. As expected, this value is in 

accordance to the study conducted by Irimescu, Mihon and Pãdure 

(2011), therefore it was chosen as the estimated parameter for drivetrain 

efficiency. Table 4.7 summarizes the estimated parameter from the 

Monte Carlo method and from the literature review. 

Table 4.7: Summary of estimated parameters via Monte Carlo optimization and 

the literature review. 

Parameter 
Estimation Method 

Monte Carlo Literature review 

𝜂 ≈ 0.80 0.72 – 0.91 

𝐶𝑑 ≈ 0.40 0.30 – 0.44 

𝑢 ≈ 1.20 - 

 

According to Table 4.7, simulation error was reduced when 

values of drivetrain efficient (η) and drag coefficient (𝐶𝑑) were set close 

to the average values found in the literature review.  
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Regarding data acquired at the racetrack, this chapter focused on 

how vehicle model parameters were estimated with the help of a 

qualifying lap at Ayrton Senna Circuit – GO, Brazil.  

The next chapter deals with another aspect of the data: how it is 

used to improve the driver performance during the race event. To 

accomplish with this aim, data from Cristais Circuit - MG, Brazil is 

presented in function of distance and is discussed based on the 

knowledge acquired along the race event. 
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5 DATA ANALYSIS  

Every successful driver trail brakes at some corners. No 

successful driver trail brakes at every corner. (SMITH, 

1996) 

5.1 Introduction 

Data acquired at the racetrack has two main purposes in this 

work: estimate vehicle parameters, presented previously, and evaluate 

driver performance, addressed in this chapter. How data analysis 

supports improvements of lap time along the race event is the focus of 

the following sections.  

As case of study, the dataset presented hereafter comprises two 

flying laps of the qualifying session at Cristais Circuit - MG. Vehicle 

speed, lateral and longitudinal accelerations, throttle position, and gear 

channels are presented and driver’s activities are discussed supported by 

this data. After, G-G diagram is presented alongside the vehicle 

racetrack position from GPS data. This chapter also addresses the so-

called Grip Factors, a metric developed by Segers (2014).  

5.2 Cristais Circuit – MG, Brazil. 

Racing a new circuit challenges drivers and racing teams 

regarding racecar setup and the learning process of a racing line. The 

case of study presented hereafter is supported by data acquired at the 

Cristais Circuit – MG, recently inaugurated at the time of writing. 

 Cristais Circuit was split into sectors with the aim to point out 

where in the racetrack time was being gained or lost. From the sectors, 

the ideal lap was calculated - an indicator of how much lap time could 

be improved, calculated by the sum of the best sectors from the laps 

being compared.  

Although ideal lap is a widespread indicator, care must be taken 

on how it is performed. According to Segers (2014), the number of 

sectors directly influences the ideal lap time. More sectors result in 

faster ideal laps because different racing lines compromise different 

phases of a corner. The late apex approach, for example, tradeoffs 

corner entry to corner exit speed. If a circuit were split in too many 

sectors, ideal lap time would join different corner phases in an 

unrealistic manner.  
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To overcome this issue, Segers (2014) recommends 

starting/closing points of sectors at the straights. In this manner, all 

phases of a corner would be enclosed into the same sector, reducing 

unreal combination of corner phases from different laps. 

In this work, Cristais Circuit was split into six sectors according 

to Figure 5.1. Sectors boundaries are given by the tick markers at the 

circuit, numbered according to the balloons. Corner numbering is given 

by the squared boxes. The following data analysis are excerpts from 

each of the six sectors. 

 
Figure 5.1: Cristais Circuit has 17 corners indicated by the squared boxes, split 

into six sectors, indicated by balloons.  

Table 5.1 presents the dataset used hereafter for data analysis. 

Two professional drivers are compared along two flying laps at Cristais 

Circuit. S1 to S6 stands for sectors number, and time difference between 

drivers is given by the Δ time for each sector.  

Table 5.1: Sectors time, in seconds, of two flying laps of the qualifying session 

at Cristais Circuit. Two professional drivers are compared. Δ time is the 

difference between Driver A and B, and ideal lap is composed by the best 

sectors of both drivers. 

 S1 S2 S3 S4 S5 S6 Total 

Driver A 20.846 21.110 18.669 

 
17.645 22.337 23.709 124.316 

Driver B 21.044 21.404 18.806 17.448 22.127 23.540 124.369 

Δ time -0.198 -0.294 -0.137 +0.197 +0.210 +0.196 -0.053 

Ideal lap 20.846 21.110 18.669 17.448 22.127 23.540 123.740 
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According to the table, Driver A was faster in the first three 

sectors (S1 to S3), although lap time difference was only 0.053s 

between Driver A and B. The sum of the best sectors from the flying 

laps is given by the ideal lap time, which was 0.576s faster than the 

fastest lap achieved by Driver A. 

5.2.2 Sector 1 

Figure 5.2 presents the G-G diagram and the racing line taken by 

the drivers at sector 1.  

 
Figure 5.2: G-G diagram and GPS plot of drivers A and B at sector 1. 

The aim of the G-G diagram in Figure 5.2 is to illustrate how 

drivers are exploring the performance envelope in a particular sector. In 

combination to the GPS plot, it illustrates how different racing lines 

cover different parts of the G-G diagram.  

Forward acceleration explores the upper part of the diagram while 

the braking phase, the bottom. In a similar manner, right-hand corners 

explore the left side of the diagram (negative lateral acceleration), while 

left-hand corner, the right side (positive acceleration). 

Sector 1 has three corners identified by numbers 1, 2 and 3 in the 

GPS plot. Corners 1 and 2 are low-speed corners linked together. Corner 

3 is a medium-speed corner followed by a straight split into sectors 1 

and 2.  

Because corner 1 is linked to the low-speed corner 2, the exit 

phase is not as important as the entry phase, where time could be gained 

by trail braking into the corner (BENTLEY, 2011). On the opposite side, 
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the exit phase of corner 2 makes it the most important corner of sector 1. 

Every speed difference at corner exit is carried along the straightaway. 

This sector characteristic suggests late braking at corner 1 and a late 

apex approach at corner 2. 

In the G-G diagram, positive lateral acceleration is assigned to the 

left-hand corners 2 and 3. At the entry phase of corner 1, there is a 

transition from the positive to negative longitudinal acceleration. This 

transition from forward acceleration to the pure braking phase is given 

by the vertical trace at the middle of the diagram.  

From the pure braking phase, drivers trail brake towards the apex 

of corner 1, but Driver A has higher combined longitudinal and lateral 

accelerations (trail braking) than Driver B.  

The transition from corner 1 to corner 2 is given by the traces 

going from the left to the right side of the plot. At the transition, Driver 

A explores more the vehicle performance than Driver B (data points of 

Driver A are closer to the boundary than those of driver B are). At the 

entry phase of corner 2, Driver B, in turn, explores more the vehicle 

(indicated in the diagram by the larger radius formed by the data points 

on the bottom right side of the plot).  

The apex of left-hand corners 2 and 3 are plotted on the right side 

of the diagram. At the apex, the vehicle is at balanced throttle around 0 

G’s of longitudinal acceleration. The exit phase goes from the upper 

right side where maximum combined lateral and longitudinal 

acceleration takes place towards the central part of the diagram, which is 

the pure forward acceleration phase. 

Figure 5.3 shows the first sector excerpt from the qualifying lap. 

Figure 5.3-a presents the time variance (Δ time) between Driver A and 

B, and Figure 5.3-b presents the vehicle speed plot.  

Data channels are plotted against distance because driver 

activities must be compared at the same place of the racetrack. In a time-

series, a point at the same time not necessarily means the drivers are at 

the same location of the racetrack due to lap time differences (SEGERS, 

2014).  

In the first sector, Driver A is 0.198 seconds faster than Driver B. 

The main sources of time difference are assigned to corners 1 and 2. 
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Figure 5.3: Data comparison of a qualifying lap of two professional drivers in 

Sector 1. a) time variance - Δ time, b) vehicle speed. Driver A is 

0.198 seconds faster than Driver B 

According to the inclination of the speed traces in Figure 5.3-b 

(~220 m to 300 m), Driver A trail brakes corner 1 and tradeoffs 

cornering exit speed for time gained along the braking phase (Figure 

5.3-a), which is better explored in the longitudinal acceleration plot of 

Figure 5.4: 

 
Figure 5.4: Longitudinal acceleration data of sector 1. 
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From the longitudinal acceleration plot above, in comparison with 

Driver B, Driver A brakes later for a longer distance and with less 

intensity, carrying more speed in the pure braking and trail braking 

phases of the corner (from ~110 m to ~300 m). 

From Figure 5.3, cornering speed at corner 2 (~350 m) is another 

source of time difference, where Driver B had a lower minimum speed. 

Among the reasons, the use of first gear, shown in the gear chart of 

Figure 5.5 at ~310 m, contributes to it. 

 
Figure 5.5: Gear chart of sector 1. 

From the gear chart in the figure above, Driver A and B had 

different gear shifting strategies. Although the gearbox is sequential, 

lowering to first gear demands two extra driver inputs, one for downshift 

and another for upshift. It takes time and demands more attention 

because the high first gear ratio tends to upset vehicle balance raising 

the engine speed, observed in the engine speed plot of Figure 5.6. 

 
Figure 5.6: Engine speed data of sector 1. 



75 

 

From about 330 m in Figure 5.6, Driver B reaches much higher 

(> 2000 rpm) engine speed than Driver A. Besides the effects on vehicle 

balance, to make sure a gear reduction does not exceed the engine speed 

limit - over revolution, which could damage the engine, the driver must 

worry about blipping the throttle to match vehicle and engine speeds, a 

difficult task due to the rapidly raise of the engine speed in such high 

gear ratio. In fact, both drivers had exceeded the limit downshifting to 

the second gear at ~210 m, and Driver B downshifting to the first gear at 

310 m. 

Longitudinal acceleration and throttle position data, shown in 

Figure 5.4 and Figure 5.7 respectively, indicates that, although drivers A 

and B go off throttle at about the same place approaching corner 1 (~120 

m), Driver B overlaps brake and throttle pedals, which is a characteristic 

of left-foot braking technique. Indeed, Driver B is a left-foot braking, 

while Driver A is a right-foot braking.  

 
Figure 5.7: Throttle percentage data of sector 1. 

Peaks of negative longitudinal acceleration (Figure 5.4), one at 

~490 m and another at ~640 m, both close to gear shifting points, 

indicates Driver B reaches the engine speed limit twice, confirmed by 

the nosy plateau of the engine speed trace in Figure 5.6. 

In this chapter, grip factors were calculated from the lateral and 

longitudinal accelerations. According to Segers (2014), thresholds of 

signal gating may vary from one racecar to another. For a low 

downforce racecar, for example, a high threshold may not gate the 

signal for the aerodynamic grip factor, or gate only a few data points, 

which are possible outliers. The opposite is also true: for a high 

downforce racecar, gating the signal too low reduces the sensibility of 
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the aero grip factor, for example. Table 5.2 presents the thresholds used 

to calculate grip factors in this chapter. 

Table 5.2: Signal gating thresholds for grip factors.  

Grip factor G lateral G longitudinal G combined Speed 

Acceleration < 1 G > 0 G - - 

Aerodynamic > 0.8 G - - 120 km/h 

Braking - < -1 G - - 

Cornering > 1 G - - - 

Overall - - > 1 G - 

 

The values shown in Table 5.2 were slightly adjusted from a 

baseline proposed by of Segers (2014) for a touring racecar. 

Figure 5.8 presents metrics of sector 1. Two bar plots are shown, 

a) average grip factors on the left side and b) average driver inputs on 

the right side. Although faster, Driver A surprisingly uses less tire grip 

than Driver B, which suggests sector time of Driver A could be 

improved. 

 
Figure 5.8: Metrics of sector 1. a) average grip factors, b) steering angle and 

throttle position. Higher grip factors indicate more tire potential is 

being used.    

Aerodynamic was the main difference between grip factors, 

Driver B has 57% higher aero grip factor than Driver A. However, it is 

not necessarily a positive indicator because of a phenomenon known as 

tire induced drag, which increases tire rolling resistance by the increase 

of the tire slip angle (MILLIKEN & MILLIKEN, 1995). To further 

explain, both drivers are at WOT for the signal gating (𝑣𝑥 > 120km/h & 
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|𝑎𝑦| > 0.8G), which means the vehicle is being powered limited. Then, 

the higher lateral acceleration achieved by Driver B (Figure 5.3, from 

~480 m to ~530 m) is a result of higher tire slip angle producing higher 

lateral forces. The key point is: tire rolling resistance is function of tire 

slip angle. More slip angle induces more tire rolling resistance, which is 

an external resistance working against the engine power. 

From a driver point of view, Bentley (2011) points out two ways 

of increasing lateral acceleration, one negotiates a corner with higher 

speed; another is to tighten corner radius. Because Driver B was 

powered limited at corner 3, speed could not be increased. Then, the 

higher lateral acceleration only increased induced drag.  

This analysis is in according to the higher average steering angle 

observed in Figure 5.8. On the same graph, higher average throttle 

position of Driver B is due to the low speed at the entry phase of corner 

1.  In Figure 5.3 (~250 m), Driver B had caught himself too slow and 

accelerates through corner 1. 

5.2.3 Sectors 2 to 5 

For the aim of this chapter, data analysis of sectors 2 to 5 are not 

essential. However, an interested reader is directed to Appendix A, 

where these sectors are fully covered. 

5.2.4 Sector 6 

Figure 5.9 presents the G-G diagram and the GPS plot of sector 5, 

comprised by the low-speed corners 16 and 17.  

 
Figure 5.9: G-G diagram and GPS plot of drivers A and B racing line. 
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Corner 17 is the most important of the circuit because it leads to 

the longest straight of the circuit. The exit phase of this corner is crucial 

for time variance at sector 6. 

According to the G-G diagram of Figure 5.9, Driver B has larger 

performance envelope compared with Driver A. At the transition from 

corner 16 to 17 (on the diagram, traces going from the upper left to the 

bottom right side of the plot), Driver B is closer to the performance 

envelope limits, especially at the upper part of the diagram and on the 

braking phase of corner 17 (descending trace at 0.5 G’s). 

In this sector, Driver B is 0.169 faster than Driver A. Figure 5.10 

presents: a) time variance (Δ time) and b) vehicle speed. 

 
Figure 5.10: Data comparison of a qualifying lap of two professional drivers in 

Sector 1. a) time variance - Δ time, b) vehicle speed. Driver B is 

0.169 seconds faster than Driver A. 

Figure 5.10-b is a clear example of how important corner exit 

speed is. According to Table 5.1, at the beginning of sector 6 Driver B 

was 0.210 seconds slower than Driver A. After corner 17, time variance 

was progressively reduced to only 0.053 seconds at the finish line.  

Longitudinal acceleration data of sector 6 is shown in Figure 

5.11, and lateral acceleration shown in Figure 5.12.  
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Figure 5.11: Longitudinal acceleration data of sector 6. 

Corner 16 is negotiated in a similar manner. From Figure 5.11, at 

the pure braking phase, both drivers start braking at ~3540 m and reach 

the peak of deceleration at about the same place (~3560 m). 

Nevertheless, Driver B brakes for longer distance than Driver A at the 

trail braking phase (from ~3590 m to ~3630 m).  

 
Figure 5.12: Lateral acceleration data of sector 6. 

 From the G lateral plot (Figure 5.12), both drivers reach similar 

lateral acceleration. However, because Driver B had braked for a longer 

distance than Driver A, Driver A is slightly faster as indicated by the 

speed plot in Figure 5.10-b. 

The gear chart is shown in Figure 5.13, and the throttle position 

in Figure 5.14. 
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Figure 5.13: Gear chart of sector 6. 

At Corner 17, drivers take different gear shifting strategies. 

Although both drivers late apex at this corner, Driver B engages first 

gear at ~3700 m while Driver A negotiates the corner in second gear. 

 
Figure 5.14: Throttle position data of sector 6. 

Because of the higher gear ratio, to avoid wheel spin Driver B 

was more progressive on throttle application and reaches wide-open 

throttle at ~3770 m, 20 m after Driver A. However, from the 

longitudinal acceleration data, it is observed how the high gear ratio 

helps to overcome the acceleration inertia of the vehicle. The G 

longitudinal signal reaches higher values when compared with the signal 

of Driver A (~3750 m). 

Figure 5.15 presents sector 6 metrics. Because this sector is 

composed by low speed corners, there was no signal gating for the aero 

grip factor.  
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Figure 5.15: Metrics of sector 6. 

The better acceleration of Driver B at the exit phase of corner 17 

is announced by a slight higher acceleration grip factor, even though 

drivers have the same average throttle position. Driver B has slightly 

higher values of cornering and overall grip factors. Driver B also uses 

more steering angle than Driver A does. 

In the next chapter, results of the simulation are presented and 

compared with experimental data. Besides Cristais Circuit, which is the 

focus of this work, Ayrton Senna circuit is also presented with the aim 

to compare the level of accuracy between training and test data. 
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6 SIMULATION RESULTS AND DISCUSSION 

The results produced by the simulation software are as 

accurate as the accuracy of the modeled parameters. 

(SEGERS, 2014) 

6.1 Introduction 

In this section, simulation results are present and discussed based 

on comparison to the experimental data from flying laps at the 

qualifying session. Two sets of data are used: training data from Ayrton 

Senna Circuit – GO, Brazil, and test data from Cristais Circuit – MG, 

Brazil.  

For each circuit, a comparison of experimental with simulated 

speed profile are presented and discussed. Aiming to have a tangible 

measure, visual comparison is performed alongside the root mean 

squared error (RMSE) and residual values between datasets. Simulated 

gear shifting strategy is also presented and discussed. 

6.2 Training data: Ayrton Senna Circuit – GO, Brazil. 

Figure 6.1 indicates the circuit location of some points of interest 

for the discussion of results.  

 
Figure 6.1: Reference points for Ayrton Senna Circuit – GO, Brazil. 

Braking points and minimum speeds location are shown by the 

tick marks along the circuit. This figure aims to give a spatial reference 

for the speed plot shown in Figure 6.2.  

Simulation predicted a lap time of 93.30 seconds at Ayrton Senna 

Circuit, while the real fastest lap time was 93.14 seconds. Figure 6.2 
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presents simulation results along with training data from Ayrton Senna 

Circuit – GO: 

 
Figure 6.2: a) Speed profile comparison between experimental and simulated 

data. b) Residual values. 

Composed by two subplots, the main plot of Figure 6.2 overlays 

simulation results with experimental data. The bottom plot provides 

residual values between datasets, which indicates where the error is 

more significant and is the first step for calculating the deviance 

measures MAE, MSE and RMSE.  

The speed plot reveals differences between simulation and 

experimental data at the end of the main straight (< 450m). Predicted top 

speed was about 10km/h lower than actual data due to higher external 

resistances presented in the model.  

At this location of the circuit (< 450m), speeds are above 

200km/h, which emphasizes lack of aerodynamic fit of the model. 

Furthermore, rolling resistance, also function of speed, may be acting in 

combination to over detract engine power. As stated in Chapter 4, 

rolling resistance parameters were based on common values of 

passenger vehicles, which may be inadequate for a racing tire. If rolling 

resistance coefficients were set too low, the parameter estimation 

process may be biased to increase the drag coefficient aiming to 

reducing simulation error by counterbalance the external resistances. 
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This hypothesis is supported by the evidence that for speeds below 180 

km/h, this effect is not much pronounced.  

The vehicle model considers a constant coefficient of friction 

between road and tire. For this reason, at some points it was expected to 

over or underestimate the grip available along the circuit. For instance, 

at the exit phase of corner 1 (> 600m), simulation overestimates the grip 

resulting in higher acceleration than real data.  

On the other hand, approaching the wide right hand turn at 

~1000m, a crossover point between simulated and real speed trace is 

observed (Figure 6.2), i.e. simulation speed trace decreases and crosses 

the data trace. Two reasons are assigned: grip of the racetrack is 

underestimated, thus cornering speed is decreased; lack of aerodynamic 

and rolling resistance fit for speeds above 180km/h, also detracting 

cornering speed.  

From ~1700m, simulation data in Figure 6.2 shows higher speeds 

than experimental data. At this location, the racecar is negotiating a left 

hand corner at wide-open throttle (WOT). Revisiting the model 

assumptions in Chapter 4 shows that the model considers rolling 

resistance only in function of speed and consequently treats a WOT 

corner as a simple straight line. However, rolling resistance is also 

function of tire slip angle; higher slip angle produces higher rolling 

resistance forces (MILLIKEN; MILLIKEN, 1995). Therefore, 

simulation overestimates the acceleration capability of the racecar 

because it is not considering the additional rolling resistance from the 

tire slip angle. 

Residual values, seen in Figure 6.2-b, indicate differences around 

corner apexes, where speeds are minimum (600m, 1400m, 1900m, 

2500m and 3150m). They were assigned to the rolling mean method for 

data treatment of circuit parameterization. Designed curvature profile is 

less sharp around corner apex than it should. In practice, it means the 

driver’s steering input is more aggressive at corner apexes than the 

simulated one.  

Residual values direct impact deviance measures, summarized in 

Table 6.1 in comparison with the target accuracy criteria presented in 

Section 4.6. 

Table 6.1: Target and actual deviance measures for training data.  

Deviance Measure Unit Target Training Data Difference [%] 

RMSE [km/h] 242.47 142.31 -41.3 
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Simulation results accomplished the target accuracy for the three 

proposed deviance measures. Actual MAE was 36% lower than the 

target; MSE, 65.6% lower and RMSE was 41.3% less than the target. 

6.2.1 Gear shifting strategy 

Derived from the speed profile, Figure 6.3 presents a gear chart 

for both simulated and experimental data.  

 
Figure 6.3: Comparison of gear shifting strategies: simulated data against the 

strategy adopted in a flying lap at qualifying session. 

According to Figure 6.3, simulated gear chart follows similar 

strategy adopted in real life. It also illustrates two points where 

simulated gear shifting strategy diverged from experimental data: first 

gear engaged at 2500m and fifth gear at 3000m. 

Simulated gear chart, in this work, points out where there is 

engine speed margin to change gears, but it does not take into account 

driver´s technique nor vehicle balance. 

 To exemplify, consider Figure 6.3 at 3000m. The racecar 

approaches braking point in fourth gear, very close to the engine speed 

limit. A driver could either shift to fifth gear, as in the simulation, or 

keep the racecar in fourth gear until it reaches the speed limiter at the 

braking phase, as in real data. Upshifting may increase vehicle speed at 

the braking point. However, a driver might also lose performance on the 

braking and corner exit phases in consequence. This particular corner 
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leads to the longest straight of the circuit, which highlights the 

importance of corner exit speed (BENTLEY, 2011).  

Therefore, gear selection depends upon the corner it is being 

negotiated and driver’s technique. For this reason, gear chart presented 

in this work is meant to be merely a clue for testing shifting strategies at 

the circuit. In fact, drivers could have different gear shifting strategies 

without penalties on lap time. 

6.3 Test data: Cristais Circuit – MG, Brazil. 

Figure 6.4 provides reference points for the speed plot on Figure 

6.5, discussed in the following section.  

 
Figure 6.4: Reference points for Cristais Circuit – MG, Brazil. 

For the sake of simplicity, not all corners are discussed in this 

section. Reference points for Cristais Circuit are composed by relevant 

low speed corner apexes (~80km/h). 

At Cristais Circuit, simulated lap was 121.20 seconds long and 

the real lap time took 124.30 seconds, a difference of 2.6%. Figure 6.5 

presents a comparison of simulated data with test data collected after the 

race event. Test data is a flying lap at the qualifying session at Cristais 

Circuit. 
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Figure 6.5: a) Speed profile comparison between experimental and simulated 

data. b) Residual values. 

According to Figure 6.5, simulation follows the real speed profile 

of the circuit. Main characteristics such as cornering speeds and braking 

points were captured by the simulation. Main differences between 

datasets are observed on braking maneuvers and at the apex of slow 

corners (around 80km/h). 

Alongside coefficient of friction, circuit parameterization was 

assigned as a source of errors, especially the rolling method of data 

treatment. According to the speed plot of Figure 6.5 (~1000m and 

~3700m), designed curvature profile was incapable to capture correctly 

details of tight cornering sequences. 

Because the tire/road coefficient of friction was estimated for the 

Ayrton Senna Circuit, differences were expected for Cristais Circuit in 

comparison with test data.  

In fact, simulation overestimates the grip in almost all corners of 

Cristais Circuit (Figure 6.4 and Figure 6.5: 350m, 1100m, 1770m, 

3170m and 3750m) and its preceding braking points.  

In agreement, residual values in Figure 6.5 highlight data 

differences, from where deviance measures were calculated. Table 6.2 

summarizes deviance measures of test data benchmarked by training 

data. 
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Table 6.2: Deviance measures for test and training data.  

Deviance Measure Unit Training Data Test Data Difference [%] 

MAE [km/h] 3.69 6.34 +71.8 

MSE [km²/h²] 20251.23 89192.44 +340.4 

RMSE [km/h] 142.31 298.65 +109.9 

 

At the time simulations were run, no previously logged data from 

Cristais Circuit was available to the racing team. Therefore, simulation 

accuracy criteria was not defined and deviance measures are presented 

aiming to incorporate reference values to the literature. 

Lower accuracy was expected for test data in comparison with 

training data because model input parameters were not biased on the 

parameter estimation process. MAE was 71.8% higher than training 

data, MSE, 340.4% and RMSE, 109.9%.  

From deviance measures, MSE is much more sensitive to data 

differences than MAE and RMSE, which could be a good indicator for 

small differences between datasets. On the other hand, the fact that MSE 

units are squared detracts the physical meaning of the measurement.  

6.3.1 Gear shifting strategy 

As stated before, gear chart gives an estimate on where the driver 

could possibly test a different shifting strategy, but does not arbitrary 

means that it improves lap time. At the race event, four gear-shifting 

strategies were tested. They were selected based on the driver’s 

expertise while performing circuit recognition at the free practice 

sessions.  

Figure 6.6 shows simulated gear shifting strategy in comparison 

to experimental data.  



89 

 

 
Figure 6.6: Comparison of gear shifting strategies. Logged data versus 

simulation. 

In Figure 6.6, tests performed at the racetrack are marked by 

numbers 1 to 4.  

Tests 1, 2 and 4 aimed to evaluate if the first gear would help on 

corner exit phase, where the vehicle is accelerating towards the straight. 

These tests did not improved lap time because the vehicle balance was 

negatively affected by the high gear ratio reduction.  

Test 3 aimed to investigate if the engaged fourth gear would 

reduce lap time over the attempt to maintain the engine at the speed 

limiter before the corner entry. While engaging the fourth gear was 0.05 

seconds quicker, laps keeping the third gear at the speed limiter were 

more consistent because drivers focused on the braking point without 

worrying about shifting to fourth gear.   

Supported by subjective and objective evaluations, simulation 

results were presented and discussed in this chapter focused on the 

speed profile and gear shifting strategies.  

The next chapter concludes this research. Previously chapters are 

briefly revisited and the main takeaways of this work is presented. 

Recommendations for future research are also addressed, followed by 

recommendations for novice data engineers.   
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7 CONCLUSIONS 

As an object of study, modeling strategies were investigated 

aiming to simulate the speed profile of a new circuit. Because simulation 

accuracy is closely related to its input parameters, this research focused 

on vehicle parameters estimation with the help of a tool for stochastic 

simulations: the Monte Carlo method.  

To this end, experimental data were acquired from a Toyota 

Corolla silhouette racecar, a front-wheel-drive competing at the 

Brazilian championship Brasileiro de Marcas. Data from two race 

events were used for this research: Ayrton Senna Circuit, a known 

racetrack in Goias state, and Cristais Circuit, a new racetrack in Minas 

Gerais state. 

According to the literature, lap times comprise driver, vehicle, 

and racetrack performances. Each has its particular constraints 

including, but not limited to, driver’s ability, vehicle setup, and 

racetrack conditions. In effect, overall performance is trimmed by which 

limit comes first: a talented driver, for example, cannot make a slow 

racecar goes faster (beyond the machine limit), neither achieve lap times 

of dry conditions while racing in the rain.  

Conceptually, front-wheel-drive (FWD) racecars are slower than 

rear-wheel-drive configuration and are prone to understeer on throttle 

application, which is a stable condition. The FWD limit of performance 

is a tradeoff between the predictable behavior of an understeering 

vehicle with a front-weight biased setup, which improves traction but 

may suddenly oversteer on trail braking maneuvers. Thanks to the G-G 

diagram concept, lap time simulations presented in this work could 

reproduce the overall vehicle performance without the need of a 

complex vehicle model. It was possible because vehicle limits were 

lumped into a performance envelope, supported by experimental data. 

Explaining further, maximizing performance is about exploring 

the tires limit of adhesion, often expressed by the vehicle friction circle. 

This concept lumps into a single diagram the grip available at the four 

tires in function of lateral and longitudinal accelerations. However, due 

to power limitations and tire load sensitivity, a real vehicle is incapable 

to use all the tire capability and reach the boundaries of the vehicle 

friction circle. Instead, the real interaction of driver, vehicle, and 

racetrack is better expressed by the vehicle performance envelope; the 

so-called G-G diagram, feasible to be measured with lateral and 

longitudinal acceleration signals.  
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From the literature, various types of lap time simulations were 

performed supported by the G-G diagram concept. From simple point-

mass simulations to high degree-of-freedom, the more complex the 

vehicle model is, more detailed is the shape of the diagram and more 

vehicle parameters can be studied. To reduce computational costs, the 

diagram can be computed beforehand the simulations, used as a lookup 

table of the limit of adhesion in function of vehicle speed and curvature 

profile of the circuit, yet in this work the G-G the diagram was 

calculated online and the differences in terms of performance were not 

evaluated. 

Lap time simulations fall into three categories: steady state, 

quasi-steady state and transient models. Outcomes of steady state 

models are only valid for steady state maneuvers. On the other hand, a 

circuit split into many steady state entities (quasi-steady state approach) 

can approximate a transient model with savings in computational cost. 

In this work, quasi-steady state simulations were performed with 

the help of stochastic simulations aiming to parameterize the vehicle 

model.  Combinations of input parameters were provided to a simple 

point-mass vehicle model by an Optimized Latin Hypercube Sampling 

algorithm. The set of inputs were evaluated by a cost function between 

simulations and logged data of the Brazilian circuit Ayrton Senna – GO.  

The parameter estimation process was performed considering the 

impact of input parameters on simulation error. Coefficient of friction 

(𝑢), driveline efficiency (𝜂) and drag coefficient (𝐶𝑑) accounted for more 

than 85% of effects on model error. Rolling resistance coefficients 

(𝜇0, constant) and (𝜇1, speed dependent) accounted for the other 15%.  

For the Ayrton Senna Circuit, used as training data, drag 

coefficient was estimated about (𝐶𝑑 ≅ 0.40), drivetrain efficiency (𝜂 ≅
0.80) and coefficient of friction of (𝑢 ≅ 1.20). The parameters estimated 

were in accordance to the initial guesses taken from the literature, which 

suggests that for a simple model (e.g. point-mass vehicle model) typical 

values may suffice to simulate the speed profile of a racecar, although 

some error is certainly introduced to the simulations. 

Parameterization of the circuit was performed with the help of a 

CAD environment, in which the racing line was drawn by a sequence of 

arcs of constant radius. For the Ayrton Senna Circuit – GO, the process 

was supported by GPS data acquired at the race event. As for the 

Cristais Circuit – MG, there was no logged data available and design of 

the racing line was supported by the expertise of two professional 

drivers.  
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Approximation of a quasi-steady state model is closely related to 

the number of sections a racing line is split. Joining small segments of a 

circuit provides smooth transitions between cornering maneuvers. For a 

new racetrack, CAD environment boosts the design of the racing line 

because drivers visually compare the line with the real circuit, which 

includes curbs and run-off areas. The drawback is that designing by 

straight lines and arcs of constant radius - instead of splines, provides 

coarse data points, which in this work were further processed by a 

rolling mean method to smooth raw data. However, errors were reported 

in the results section because the rolling mean method was not able to 

capture small cornering sequences. Parameterization of splines may be a 

better option aiming for accuracy. 

This research also presented a case of study on how data is used 

by a small racing team to improve driver’s performance. Flying laps of 

two professional drivers were compared at the Cristais Circuit – MG. 

Although different driving techniques were attempted by the drivers, lap 

time difference was within a tenth of a second.  

In agreement with the literature, data analysis led to the 

conclusion that late apex technique is advantageous attempting a new 

circuit. During the learning process, the conservative approach of 

prioritizing corner exit instead of corner entry speed resulted in better 

sector times compared with the earlier apex approach.  

Entry-level racing categories have limited time on track, which 

affects data analysis along the race event due to the short time available 

between free practices. To extract information quickly from data, this 

research used the so-called grip factor metrics, developed by Segers 

(2014), which condenses the G-G diagram into metrics using signal 

gating of lateral and longitudinal accelerations. 

The concept of the G-G diagram elucidates why overlapping 

progressive steering and braking release towards the apex of a corner 

improves performance - trail braking. The magnitude of the sum of 

lateral and longitudinal acceleration vectors are greater compared with a 

single vector reaching the limit of grip. 

Grip factors provided important insights to this research. Higher 

accelerations or higher grip factors does not necessarily imply better lap 

times. A driver could be overtightening a corner, resulting in higher 

lateral accelerations but higher rolling resistances acting against forward 

speed (i.e. tire scrub).  

Results of lap time simulations were presented for Ayrton Senna 

and Cristais circuits. Speed profiles were overlaid with experimental 

data and evaluated by the RMSE deviance measure. Simulation error of 
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Ayrton Senna Circuit was expected to be lower in comparison to the 

Cristais Circuit because it was used as training data to estimate the 

parameters. Simulated lap time at Ayrton Senna circuit was 93.30 

seconds, 0.16 seconds slower than the best lap time achieved during the 

race event. The RMSE was calculated in 142.3 km/h. 

Cristais Circuit simulation was 0.10 seconds faster than the 

fastest lap time recorded. Compared with Ayrton Senna, RMSE 

increased 109.9%, which highlights that simulation error is 

underestimated whenever data is used to adjust parameters (i.e. training 

data). 

Simulation of gear-shifting strategies with such simple model, on 

the other hand, indicates where there is engine speed margin to up or 

downshift, but does not point out if time is being gained or lost.  

The aforementioned observations lead to the conclusions: 

 Data analysis should consider the combination of vehicle, 

racetrack and driver performances. Tires and racetrack 

conditions changes constantly and the driver’s confidence 

must be preserved, especially in challenging times such as 

competing in a new circuit; 

 Late apex approach is advantageous on the learning process 

of the racing line; 

 Grip Factor is valuable to extract information quickly from 

data, nevertheless should be used carefully as a performance 

indicator. Higher grip factors do not necessarily implies 

better lap times;  

 Provided input parameters are reasonable, a point-mass 

vehicle model is capable to simulate the speed profile of a 

circuit; 

 Deriving gear-shifting strategies from such simple model 

provides a clue whether the engine has speed margin to up or 

downshift but does not provide insights about time gained or 

lost; 

 Estimating parameters with the help of stochastic simulations 

and data acquired at race events is capable to fine tune typical 

values from the literature for a specific racecar; 

 If parameters were estimated with a given set of data 

(training data), simulation validation must be performed with 

a completely different set of data (test data), otherwise 

simulation accuracy is overestimated; 
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 Tire/road coefficient of friction, aerodynamic drag resistance 

and drivetrain efficiency account for about 85% of the effects 

on simulation error of a point-mass vehicle model. 

7.1.1 Recommendations for future work  

Along the years, few books about data analysis techniques have 

been written, among them, Segers (2014) has brought important 

knowledge from his experience from GT series and more recently DTM 

and Brazilian Stock Car. From a driver’s perspective, Bentley (2011) 

presents an extensive guide of driving techniques, supported by years of 

experience as a driver himself and coaching drivers in many racing 

classes, including Indy Cars. 

Literature about data analysis and driving techniques is extensive 

and currently up to date. On the other hand, a methodology for data 

analysis in motorsports is an important topic yet to be addressed, both to 

real and virtual race events. Driving simulators are playing a major part 

of driver’s preparation, even in entry-level racing categories. Besides, a 

methodology to tackle data analysis in virtual racing environments is 

perhaps a more feasible alternative for future works. 

Data analysis in motorsports is heavily supported by heuristic 

knowledge, and poorly documented in the literature. Tire mileage, 

racetrack condition and driver’s feedback should always be considered 

by the data engineer. Trying to improve lap times with warn out tires or 

with an unconfident driver certainly becomes a frustrating experience.  

Drivers are physical and mentally overloaded driving at the limit. 

Consequently, they have limited capacity to absorb information from 

data acquired right after test sessions. This work suggests some points to 

be considered in future researches: 

 Data analysis should be objective and focused on the most 

important sources of time variance; 

 Use of metrics possibly to attenuate data overload; 

 Driving consistency should be tackled first. If a given corner is 

negotiated in a different manner every single lap, improvements 

are less likely to happen; 

 Driver’s activities: steering angle, throttle position, gear, brake 

pressure and vehicle speed, should be analyzed before other 

logged channels (regarding driver´s performance); 

 A visual oriented analysis, such as onboard video comparisons, 

can help drivers to understand the improvements to be made. 
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In summary, concepts and techniques to improve driver 

performance exists and are well documented. How to use them 

effectively is the problem to be solved.  

Another topic yet to be addressed deals with validation 

procedures for lap time simulations. Although visual comparison 

between simulation and experimental data is considered valid by many 

experts, the lack of tangible measures makes difficult to compare 

different methods. This work presented three deviance measures: mean 

absolute error (MAE), mean squared error (MSE), and root mean 

squared error (RMSE). Although RMSE is more sensitive to data 

outliers, there is no strong argument to use this deviance measure 

instead of the others. In fact, a robust metric could even have more than 

one deviance measure and it might include other types of evaluation 

such as dynamic time warping algorithms (DTW). 

Finally, this work presented a method for estimating parameters 

using stochastic simulations. This method could be automated by the 

development of a software. Furthermore, provided output torque from a 

chassis dynamometer is available, it may be possible to estimate 

parameters solely from the data acquired at the racetrack. Using 

conservation of energy, external resistances can be calculated and fitted 

into a model. Future works could also compare different methods to 

estimate parameters. Drag coefficient, for example, estimated with the 

help of computational fluid dynamics (CFD), coast-down tests, and data 

from racetrack before mentioned.  
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APPENDIX A 

SECTOR 2 
 

G-G diagram and GPS plot are presented in Figure A.1. Sector 2 

is composed by corners 4, 5 and 6. Corners 4 and 5 are low-speed 

corners linked the medium-speed corner 6. 

 
Figure A.1: G-G diagram and racing line of drivers A and B at sector 2. 

From the G-G diagram, drivers explores the performance 

envelope in a similar manner, except for the exit phase of corner 4, and 

for the transition from corner 4 to 5. At corner 4, Driver A has better 

acceleration (higher G longitudinal values on the upper left part of the 

diagram). However, from corner 4 to 5, Driver B further explores the 

vehicle performance in comparison to Driver A (data points are closer to 

the boundary of the diagram than those of Driver A).   

Figure A.2 presents a) the time variance and b) vehicle speed in 

sector 2. 

 

 

 
































